Hierarchical accumulation network with grid attention for image super-resolution

被引:10
|
作者
Yang, Yue [1 ]
Qi, Yong [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
关键词
Image super-resolution; Grouping; Attention mechanism; Accumulation network;
D O I
10.1016/j.knosys.2021.107520
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional neural networks (CNNs) have recently shown promising results in single image super-resolution (SISR) due to their powerful representation ability. However, existing CNN-based SR methods mainly focus on deeper architecture design to obtain high-level semantic information, neglecting the features of intermediate layers containing fine-grained texture information and thus limiting the capacity for producing precise high-resolution images. To tackle this issue, we propose a hierarchical accumulation network (HAN) with grid attention in this paper. Specifically, a hierarchical feature accumulation (HFA) structure is proposed to accumulate outputs of intermediate layers in a grouping manner for exploiting the features of different semantic levels. Moreover, we introduce a multi-scale grid attention module (MGAM) to refine features of the same level. The MGAM employs a pyramid sampling with self-attention mechanism to efficiently model the non-local dependencies between pixel features and produces refined representations. By this means, the universal features in connection with spatial similarity and semantic levels are produced for image SR. Experimental results on five benchmark datasets with different degradation models demonstrate the superiority of our HAN in terms of quantitative metrics and visual quality. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lightweight adaptive enhanced attention network for image super-resolution
    Li Wang
    Lizhong Xu
    Jianqiang Shi
    Jie Shen
    Fengcheng Huang
    Multimedia Tools and Applications, 2022, 81 : 6513 - 6537
  • [32] Dynamic dual attention iterative network for image super-resolution
    Hao Feng
    Liejun Wang
    Shuli Cheng
    Anyu Du
    Yongming Li
    Applied Intelligence, 2022, 52 : 8189 - 8208
  • [33] Image super-resolution based on adaptive cascading attention network
    Zhou, Dengwen
    Chen, Yiming
    Li, Wenbin
    Li, Jinxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [34] Lightweight Attention-Guided Network for Image Super-Resolution
    Ding, Zixuan
    Juan, Zhang
    Xiang, Li
    Wang, Xinyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [35] Lightweight adaptive enhanced attention network for image super-resolution
    Wang, Li
    Xu, Lizhong
    Shi, Jianqiang
    Shen, Jie
    Huang, Fengcheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6513 - 6537
  • [36] Single image super-resolution via a ternary attention network
    Lianping Yang
    Jian Tang
    Ben Niu
    Haoyue Fu
    Hegui Zhu
    Wuming Jiang
    Xin Wang
    Applied Intelligence, 2023, 53 : 13067 - 13081
  • [37] DANS: Deep Attention Network for Single Image Super-Resolution
    Talreja, Jagrati
    Aramvith, Supavadee
    Onoye, Takao
    IEEE ACCESS, 2023, 11 : 84379 - 84397
  • [38] Single image super-resolution via a ternary attention network
    Yang, Lianping
    Tang, Jian
    Niu, Ben
    Fu, Haoyue
    Zhu, Hegui
    Jiang, Wuming
    Wang, Xin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13067 - 13081
  • [39] Efficient residual attention network for single image super-resolution
    Hao, Fangwei
    Zhang, Taiping
    Zhao, Linchang
    Tang, Yuanyan
    APPLIED INTELLIGENCE, 2022, 52 (01) : 652 - 661
  • [40] A novel attention-enhanced network for image super-resolution
    Bo, Yangyu
    Wu, Yongliang
    Wang, Xuejun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 130