On optimal terminal wealth under transaction costs

被引:23
作者
Cvitanic, J [1 ]
Wang, H
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
transactions; optimal terminal wealth; random;
D O I
10.1016/S0304-4068(00)00066-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this note, we show that the modern approach to the problem of maximizing expected utility from terminal wealth in financial markets, namely martingale/duality methodology, works also in the presence of proportional transaction costs. More precisely, we show that the optimal terminal wealth is given as the inverse of marginal utility evaluated at the random variable which is optimal for an appropriately defined dual problem. We thereby resolve a question left open by [Mathematical Finance 6 (1996) 133]. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 14 条
  • [1] Brannath W, 1999, LECT NOTES MATH, V1709, P349
  • [2] CUOCO D, 1997, OPTIMAL CONSUMPTION
  • [3] CVITANIC J, 1999, FINANC STOCH, V3, P35, DOI DOI 10.1007/S007800050051
  • [4] Cvitanic J., 1996, Mathematical Finance, V6, P133, DOI 10.1111/j.1467-9965.1996.tb00075.x
  • [5] DELBAEN F, 1999, P SEM STOCH AN RAND
  • [6] MARTINGALES AND ARBITRAGE IN SECURITIES MARKETS WITH TRANSACTION COSTS
    JOUINI, E
    KALLAL, H
    [J]. JOURNAL OF ECONOMIC THEORY, 1995, 66 (01) : 178 - 197
  • [7] Kabanov YM, 1999, Finance Stochastics, V3, P237
  • [8] Karatzas I., 1998, Methods of mathematical finance, V39, pxvi+
  • [9] A GENERALIZATION OF A PROBLEM OF STEINHAUS
    KOMLOS, J
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 217 - &
  • [10] Kramkov D, 1999, ANN APPL PROBAB, V9, P904