Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

被引:192
|
作者
Tian, B
Gao, YT
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
[3] CCAST, World Lab, Beijing 100080, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100083, Peoples R China
[5] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.physleta.2005.05.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 236
页数:9
相关论文
共 50 条
  • [41] Modulation analysis and optical solitons of perturbed nonlinear Schrodinger equation
    Houwe, A.
    Sabi'u, J.
    Betchewe, G.
    Inc, M.
    Doka, S. Y.
    REVISTA MEXICANA DE FISICA, 2021, 67 (04)
  • [42] Symbolic computation of solitons in the normal dispersion regime of inhomogeneous optical fibres
    Liu, Wen-Jun
    Tian, Bo
    Li, Min
    Jiang, Yan
    Qu, Qi-Xing
    Wang, Pan
    Sun, Kun
    QUANTUM ELECTRONICS, 2011, 41 (06) : 545 - 551
  • [43] Unperturbed and perturbed nonlinear Schrodinger system for optical fiber solitons
    Moussa, R
    Goumri-Said, S
    Aourag, H
    PHYSICS LETTERS A, 2000, 266 (2-3) : 173 - 182
  • [44] Exact Soliton Solutions for Nonlinear Perturbed Schrodinger Equations with Nonlinear Optical Media
    Gepreel, Khaled A.
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 21
  • [45] Soliton collision in a general coupled nonlinear Schrodinger system via symbolic computation
    Wang, Ming
    Shan, Wen-Rui
    Lu, Xing
    Xue, Yu-Shan
    Lin, Zhi-Qiang
    Tian, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11258 - 11264
  • [46] Types of solutions of the variable-coefficient nonlinear Schrodinger equation with symbolic computation
    Liu, Wen-Jun
    Tian, Bo
    Zhang, Hai-Qiang
    PHYSICAL REVIEW E, 2008, 78 (06)
  • [47] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [48] Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model
    Gaididei, YB
    Schjodt-Eriksen, J
    Christiansen, PL
    PHYSICAL REVIEW E, 1999, 60 (04): : 4877 - 4890
  • [49] Symbolic computation on soliton solutions for variable-coefficient nonlinear Schrodinger equation in nonlinear optics
    Liu, Wen-Jun
    Tian, Bo
    OPTICAL AND QUANTUM ELECTRONICS, 2012, 43 (11-15) : 147 - 162
  • [50] Optical vortex bullets in inhomogeneous dispersive nonlinear fibers
    Talebzadeh, Robabeh
    Bavaghar, Mehrdad
    OPTICAL ENGINEERING, 2012, 51 (05)