Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

被引:192
|
作者
Tian, B
Gao, YT
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
[3] CCAST, World Lab, Beijing 100080, Peoples R China
[4] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100083, Peoples R China
[5] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.physleta.2005.05.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:228 / 236
页数:9
相关论文
共 50 条
  • [21] Dark two-soliton solutions for nonlinear Schrodinger equations in inhomogeneous optical fibers
    Liu, Xiaoyan
    Luan, Zitong
    Zhou, Qin
    Liu, Wenjun
    Biswas, Anjan
    CHINESE JOURNAL OF PHYSICS, 2019, 61 : 310 - 315
  • [22] Some exact analytical solutions to the inhomogeneous higher-order nonlinear Schrodinger equation using symbolic computation
    Li, Biao
    Chen, Yong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (10-11): : 509 - 518
  • [23] Exact solutions of nonlinear Schrodinger equation by using symbolic computation
    Kaplan, Melike
    Unsal, Omer
    Bekir, Ahmet
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (08) : 2093 - 2099
  • [24] Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrodinger equation and stability analysis
    Akram, Sonia
    Ahmad, Jamshad
    Shafqat-Ur-Rehman
    Sarwar, Shahzad
    Ali, Asghar
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (05)
  • [25] Variable-coefficient higher-order nonlinear Schrodinger model in optical fibers: Variable-coefficient bilinear form, Backlund transformation, brightons and symbolic computation
    Tian, Bo
    Gao, Yi-Tian
    Zhu, Hong-Wu
    PHYSICS LETTERS A, 2007, 366 (03) : 223 - 229
  • [26] Soliton interactions for coupled nonlinear Schrodinger equations with symbolic computation
    Liu, Wen-Jun
    Pan, Nan
    Huang, Long-Gang
    Lei, Ming
    NONLINEAR DYNAMICS, 2014, 78 (01) : 755 - 770
  • [27] SYMBOLIC-COMPUTATION STUDY ON THE (2+1)-DIMENSIONAL DISPERSIVE LONG WAVE SYSTEM
    Sun, Kun
    Tian, Bo
    Liu, Wen-Jun
    Li, Min
    Qu, Qi-Xing
    Jiang, Yan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) : 2259 - 2272
  • [28] An extended subequation rational expansion method with symbolic computation and solutions of the nonlinear Schrodinger equation model
    Chen, Yong
    Li, Biao
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2008, 2 (02) : 242 - 255
  • [29] Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation
    Xu, Tao
    Tian, Bo
    Zhang, Cheng
    Meng, Xiang-Hua
    Lue, Xing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (41)
  • [30] Painleve analysis and symbolic computation for a nonlinear Schrodinger equation with dissipative perturbations
    Bo, T
    Gao, YT
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1996, 51 (03): : 167 - 170