Asymptotic behaviour of solutions to non-commensurate fractional-order planar systems

被引:7
|
作者
Diethelm, Kai [1 ]
Thai, Ha Duc [2 ]
Tuan, Hoang The [2 ]
机构
[1] Univ Appl Sci Wurzburg Schweinfurt, Fac Appl Nat Sci & Humanities FANG, Ignaz Schon Str 11, D-97421 Schweinfurt, Germany
[2] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam
关键词
Non-commensurate fractional order planar systems; Asymptotic behaviour of solutions; Global attractivity; Mittag-Leffler stability; STABILITY;
D O I
10.1007/s13540-022-00065-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying non-commensurate fractional order planar systems. Our contributions are to derive sufficient conditions for the global attractivity of non-trivial solutions to fractional-order inhomogeneous linear planar systems and for the Mittag-Leffler stability of an equilibrium point to fractional order nonlinear planar systems. To achieve these goals, our approach is as follows. Firstly, based on Cauchy's argument principle in complex analysis, we obtain various explicit sufficient conditions for the asymptotic stability of linear systems whose coefficient matrices are constant. Secondly, by using Hankel type contours, we derive some important estimates of special functions arising from a variation of constants formula of solutions to inhomogeneous linear systems. Then, by proposing carefully chosen weighted norms combined with the Banach fixed point theorem for appropriate Banach spaces, we get the desired conclusions. Finally, numerical examples are provided to illustrate the effect of the main theoretical results.
引用
收藏
页码:1324 / 1360
页数:37
相关论文
共 50 条
  • [1] Asymptotic behaviour of solutions to non-commensurate fractional-order planar systems
    Kai Diethelm
    Ha Duc Thai
    Hoang The Tuan
    Fractional Calculus and Applied Analysis, 2022, 25 : 1324 - 1360
  • [2] A stability test for non-commensurate fractional order systems
    Sabatier, Jocelyn
    Farges, Christophe
    Trigeassou, Jean-Claude
    SYSTEMS & CONTROL LETTERS, 2013, 62 (09) : 739 - 746
  • [3] A graphic stability criterion for non-commensurate fractional-order time-delay systems
    Gao, Zhe
    NONLINEAR DYNAMICS, 2014, 78 (03) : 2101 - 2111
  • [4] A graphic stability criterion for non-commensurate fractional-order time-delay systems
    Zhe Gao
    Nonlinear Dynamics, 2014, 78 : 2101 - 2111
  • [6] Model reduction in commensurate fractional-order linear systems
    Tavakoli-Kakhki, M.
    Haeri, M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2009, 223 (I4) : 493 - 505
  • [7] Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance
    Ding, Dongsheng
    Qi, Donglian
    Peng, Junmin
    Wang, Qiao
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 667 - 677
  • [8] Stabilization of equilibrium points for commensurate fractional-order nonlinear systems
    Guo, Yanping
    Du, Mingxing
    Fan, Qiaoqiao
    Ji, Yude
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10475 - 10480
  • [9] Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems
    Ding, Dongsheng
    Qi, Donglian
    Wang, Qiao
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (05): : 681 - 690
  • [10] Stability Analysis for a Class of Fractional-Order System with Commensurate Order
    Wang, Dongfeng
    Wang, Xiaoyan
    Han, Pu
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3472 - 3478