Multiple Order Local Information model for link prediction in complex networks

被引:10
|
作者
Yu, Jiating
Wu, Ling-Yun [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, MADIS,IAM, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Link prediction; Common neighbors; Network evolution; Network diffusion; Complex networks; Local information;
D O I
10.1016/j.physa.2022.127522
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Asa classical problem in the field of complex networks, link prediction has attracted much attention from researchers, which is of great significance to help us understand the evolution and dynamic development mechanisms of networks. Although various network type-specific algorithms have been proposed to tackle the link prediction problem, most of them suppose that the network structure is dominated by the Triadic Closure Principle. We still lack an adaptive and comprehensive understanding of network formation patterns for predicting potential links. In addition, it is valuable to investigate how network local information can be better utilized. To this end, we proposed a novel method named Link prediction using Multiple Order Local Information (MOLI) that exploits the local information from the neighbors of different distances, with parameter that can be a prior-driven based on prior knowledge, or data-driven by solving an optimization problem on observed networks. MOLI defined a local network diffusion process via random walks on the graph, resulting in better use of network information. We show that MOLI outperforms the other 12 widely used link prediction methods on 15 different types of simulated and real-world networks. We also conclude that there are different patterns of local information utilization for different networks, including social networks, communication networks, biological networks, etc. In particular, the classical common neighbor-based methods are not as adaptable to all social networks as it is perceived to be; instead, some of the social networks obey the Quadrilateral Closure Principle which preferentially connects paths of length three. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An Efficient Link Prediction Model in Dynamic Heterogeneous Information Networks Based on Multiple Self-attention
    Ruan, Beibei
    Zhu, Cui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, 2021, 12817 : 62 - 74
  • [32] Link prediction based on node weighting in complex networks
    Oğuz Fındık
    Emrah Özkaynak
    Soft Computing, 2021, 25 : 2467 - 2482
  • [33] A Survey of Link Prediction in Information Networks
    Cui, Yanpeng
    Liu, Yuanyuan
    Hu, Jianwei
    Li, Hui
    2018 IEEE INTERNATIONAL CONFERENCE ON SMART INTERNET OF THINGS (SMARTIOT 2018), 2018, : 29 - 33
  • [34] Link prediction based on node weighting in complex networks
    Findik, Oguz
    Ozkaynak, Emrah
    SOFT COMPUTING, 2021, 25 (03) : 2467 - 2482
  • [35] Link prediction in complex networks based on resource transition capacity and local paths
    Pan, Xiaohui
    Xu, Guiqiong
    Dong, Chen
    MODERN PHYSICS LETTERS B, 2025,
  • [36] Bimodal accuracy distribution of link prediction in complex networks
    Zhang, Chengjun
    Qian, Ming
    Shen, Xinyu
    Li, Qi
    Lei, Yi
    Yu, Wenbin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (08):
  • [37] An Efficient Method for Link Prediction in Complex Multiplex Networks
    Sharma, Shikhar
    Singh, Anurag
    2015 11TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS (SITIS), 2015, : 453 - 459
  • [38] Toward Effective Link Prediction Based on Local Information in Organizational Social Networks
    Szyman, Pawel
    Barbucha, Dariusz
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2023, 2023, 14162 : 313 - 325
  • [39] Enhancing robustness of link prediction for noisy complex networks
    Chen, Xing
    Wu, Tao
    Xian, Xingping
    Wang, Chao
    Yuan, Ye
    Ming, Guannan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 555 (555)
  • [40] An effective representation learning model for link prediction in heterogeneous information networks
    Kumar, Vishnu
    Krishna, P. Radha
    COMPUTING, 2024, 106 (07) : 2185 - 2210