Observation of Stark many-body localization without disorder

被引:111
作者
Morong, W. [1 ,2 ,3 ]
Liu, F. [1 ,2 ,3 ]
Becker, P. [1 ,2 ,3 ]
Collins, K. S. [1 ,2 ,3 ]
Feng, L. [1 ,2 ,3 ]
Kyprianidis, A. [1 ,2 ,3 ]
Pagano, G. [4 ]
You, T. [1 ,2 ,3 ]
Gorshkov, A. V. [1 ,2 ,3 ]
Monroe, C. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] NIST, College Pk, MD 20783 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX USA
基金
美国国家科学基金会;
关键词
ENTANGLEMENT; DYNAMICS; TIME; THERMALIZATION; TRANSITION;
D O I
10.1038/s41586-021-03988-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermalization is a ubiquitous process of statistical physics, in which a physical system reaches an equilibrium state that is defined by a few global properties such as temperature. Even in isolated quantum many-body systems, limited to reversible dynamics, thermalization typically prevails(1). However, in these systems, there is another possibility: many-body localization (MBL) can result in preservation of a non-thermal state(2,3). While disorder has long been considered an essential ingredient for this phenomenon, recent theoretical work has suggested that a quantum many-body system with a spatially increasing field-but no disorder-can also exhibit MBL4, resulting in 'Stark MBL'(5). Here we realize Stark MBL in a trapped-ion quantum simulator and demonstrate its key properties: halting of thermalization and slow propagation of correlations. Tailoring the interactions between ionic spins in an effective field gradient, we directly observe their microscopic equilibration for a variety of initial states, and we apply single-site control to measure correlations between separate regions of the spin chain. Furthermore, by engineering a varying gradient, we create a disorder-free system with coexisting long-lived thermalized and non-thermal regions. The results demonstrate the unexpected generality of MBL, with implications about the fundamental requirements for thermalization and with potential uses in engineering long-lived non-equilibrium quantum matter. Experiments with a trapped-ion quantum simulator observe Stark many-body localization, in which the quantum system evades thermalization despite having no disorder.
引用
收藏
页码:393 / +
页数:22
相关论文
共 70 条
  • [1] Colloquium: Many-body localization, thermalization, and entanglement
    Abanin, Dmitry A.
    Altman, Ehud
    Bloch, Immanuel
    Serbyn, Maksym
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
  • [2] Rare-region effects and dynamics near the many-body localization transition
    Agarwal, Kartiek
    Altman, Ehud
    Demler, Eugene
    Gopalakrishnan, Sarang
    Huse, David A.
    Knap, Michael
    [J]. ANNALEN DER PHYSIK, 2017, 529 (07)
  • [3] Many-body localization: An introduction and selected topics
    Alet, Fabien
    Laflorencie, Nicolas
    [J]. COMPTES RENDUS PHYSIQUE, 2018, 19 (06) : 498 - 525
  • [4] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [5] Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles
    Atas, Y. Y.
    Bogomolny, E.
    Giraud, O.
    Roux, G.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (08)
  • [6] Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
    Basko, DM
    Aleiner, IL
    Altshuler, BL
    [J]. ANNALS OF PHYSICS, 2006, 321 (05) : 1126 - 1205
  • [7] Probing many-body dynamics on a 51-atom quantum simulator
    Bernien, Hannes
    Schwartz, Sylvain
    Keesling, Alexander
    Levine, Harry
    Omran, Ahmed
    Pichler, Hannes
    Choi, Soonwon
    Zibrov, Alexander S.
    Endres, Manuel
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    [J]. NATURE, 2017, 551 (7682) : 579 - +
  • [8] Stability of electric field driven many-body localization in an interacting long-range hopping model
    Bhakuni, Devendra Singh
    Sharma, Auditya
    [J]. PHYSICAL REVIEW B, 2020, 102 (08)
  • [9] Many-Body Localization Dynamics from Gauge Invariance
    Brenes, Marlon
    Dalmonte, Marcello
    Heyl, Markus
    Scardicchio, Antonello
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (03)
  • [10] Probing Renyi entanglement entropy via randomized measurements
    Brydges, Tiff
    Elben, Andreas
    Jurcevic, Petar
    Vermersch, Benoit
    Maier, Christine
    Lanyon, Ben P.
    Zoller, Peter
    Blatt, Rainer
    Roos, Christian F.
    [J]. SCIENCE, 2019, 364 (6437) : 260 - +