Regularity for a fractional p-Laplace equation

被引:15
作者
Schikorra, Armin [1 ]
Shieh, Tien-Tsan [2 ]
Spector, Daniel E. [3 ]
机构
[1] Albert Ludwigs Univ, Mathemat Inst, Abt Reine Math, Eckerstr 1, D-79104 Freiburg, Germany
[2] Natl Taiwan Univ, Natl Ctr Theoret Sci, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan
[3] Natl Chiao Tung Univ, Dept Appl Math, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan
关键词
Fractional p-Laplacian; fractional gradient; regularity theory;
D O I
10.1142/S0219199717500031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we consider regularity theory for a fractional p-Laplace operator which arises in the complex interpolation of the Sobolev spaces, the H-s,H-p-Laplacian. We obtain the natural analogue to the classical p-Laplacian situation, namely C-loc(s+alpha)-regularity for the homogeneous equation.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Regularity of solutions of the fractional porous medium flow [J].
不详 .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (05) :1701-1746
[2]  
[Anonymous], LECT NOTES UNIONE MA
[3]  
[Anonymous], 1996, DEGRUYTER SERIES NON
[4]   The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions [J].
Biler, Piotr ;
Imbert, Cyril ;
Karch, Grzegorz .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :497-529
[5]   HARMONIC ANALYSIS MEETS CRITICAL KNOTS. CRITICAL POINTS OF THE MOBIUS ENERGY ARE SMOOTH [J].
Blatt, Simon ;
Reiter, Philipp ;
Schikorra, Armin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (09) :6391-6438
[6]   Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case [J].
Brasco, Lorenzo ;
Lindgren, Erik .
ADVANCES IN MATHEMATICS, 2017, 304 :300-354
[7]   Nonlinear Porous Medium Flow with Fractional Potential Pressure [J].
Caffarelli, Luis ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :537-565
[8]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[9]   Nonlocal Harnack inequalities [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) :1807-1836
[10]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573