Convergence of Conze-Lesigne averages

被引:24
作者
Host, B [1 ]
Kra, B [1 ]
机构
[1] Univ Marne la Vallee, Equipe Analyse & Math Appliquees, F-77454 Marne La Vallee, France
关键词
D O I
10.1017/S0143385701001249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence of N-1 Sigmaf(1)(T(a1n)x)f(2)(T(a2n)x)f(3)(T(a3n)x), for a measure-preserving system (X, B, mu, T) and f(1), f(2), f(3) is an element of L(infinity)(mu). This generalizes the theorem of Conze and Lesigne on such expressions and simplifies the proof. We also obtain a description of the limit.
引用
收藏
页码:493 / 509
页数:17
相关论文
共 10 条
[1]   WEAKLY MIXING PET [J].
BERGELSON, V .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1987, 7 :337-349
[2]  
BOURGAIN J, 1989, PUBL IHES, V69, P5, DOI DOI 10.1007/BF02698838
[3]  
CONZE JP, 1984, B SOC MATH FR, V112, P143
[4]  
CONZE JP, 1988, CR ACAD SCI I-MATH, V306, P491
[5]  
CONZE JP, PUBL I RECH MATH REN, P1
[6]  
Furstenberg H, 1996, OHIO ST U M, V5, P193
[7]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256
[8]   FUNCTIONAL-EQUATIONS, JOINING OF SKEW PRODUCTS AND ERGODIC-THEOREMS FOR DIAGONAL MEASURES [J].
LESIGNE, E .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (03) :315-351
[9]   ERGODIC-THEOREMS FOR A TRANSLATION ON A NIL-MANIFOLD [J].
LESIGNE, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :115-126
[10]  
LESIGNE E, 1984, B SOC MATH FR, V112, P177