Krull dimension of generalized Weyl algebras and iterated skew polynomial rings: Commutative coefficients

被引:21
作者
Bavula, V
van Oystaeyen, F
机构
[1] Kiev State Univ, Dept Math, UA-252617 Kiev, Ukraine
[2] Univ Instelling Antwerp, Dept Math & Comp Sci, B-2610 Wilrijk, Belgium
关键词
D O I
10.1006/jabr.1998.7482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many rings that have enjoyed growing interest in recent years, e.g., quantum enveloping algebras, quantum matrices, certain Witten-algebras,...,can be presented as generalized Weyl algebras. In the paper we develop techniques for calculating dimensions, here mainly the Krull dimension in the sense of Rentschler-Gabriel, of such generalized Weyl algebras and specify the results for some popular algebras including those mentioned above. (C) 1998 Academic Press.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 21 条
[1]  
Bavula V, 1996, B SCI MATH, V120, P293
[2]  
Bavula V., 1996, CMS C P, V18, P81
[3]  
Bavula V., 1991, FUNKTSIONAL ANAL PRI, V25, P80
[4]  
Bavula V. V., 1993, CMS C P, V14, P83
[5]  
Bavula V.V., 1993, St. Petersburg Math. J., V4, P71
[6]  
BONNEFOND G, 1978, CR ACAD SCI A MATH, V286, P759
[7]   KRULL DIMENSION OF SKEW-LAURENT EXTENSIONS [J].
GOODEARL, KR ;
LENAGAN, TH .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (01) :109-147
[8]   KRULL DIMENSION AND GLOBAL DIMENSION OF SIMPLE ORE-EXTENSIONS [J].
HART, R .
MATHEMATISCHE ZEITSCHRIFT, 1971, 121 (04) :341-&
[9]   ON ORE AND SKEW-LAURENT EXTENSIONS OF NOETHERIAN-RINGS [J].
HODGES, T ;
MCCONNELL, JC .
JOURNAL OF ALGEBRA, 1981, 73 (01) :56-64
[10]   THE KRULL DIMENSION OF SKEW LAURENT EXTENSIONS OF COMMUTATIVE NOETHERIAN-RINGS [J].
HODGES, TJ .
COMMUNICATIONS IN ALGEBRA, 1984, 12 (11-1) :1301-1310