Ballistic thermal transport by phonons in three dimensional periodic nanostructures

被引:7
作者
Xie, Zhong-Xiang [1 ]
Zhang, Yong [1 ]
Yu, Xia [1 ]
Wang, Hai-Bin [1 ]
Li, Ke-Min [2 ]
Pan, Chang-Ning [3 ]
Chen, Qiao [4 ]
机构
[1] Hunan Inst Technol, Dept Math & Phys, Hengyang 421002, Peoples R China
[2] Hunan Inst Sci & Technol, Coll Phys & Eletron, Yueyang 414006, Peoples R China
[3] Hunan Univ Technol, Sch Sci, Zhuzhou 412000, Peoples R China
[4] Hunan Inst Engn, Dept Maths & Phys, Xiangtan 411101, Peoples R China
基金
中国国家自然科学基金;
关键词
thermal transport; phonon; quantum structures; GRAPHENE NANORIBBONS; SILICON NANOWIRES; HEAT-CONDUCTION; NANOTUBES; FLOW;
D O I
10.1088/0953-8984/27/9/095303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Ballistic thermal transport properties by phonons in three dimensional (3D) periodic nanostructures is investigated. Results show that thermal transport properties in 3D periodic nanostructures can be efficiently tuned by modulating structural parameters of systems. When the incident frequency is below the first cutoff frequency, the quasi/formal-periodic oscillations of the transmission coefficient versus the periodic number/length can be observed. When the incident frequency is above the first cutoff frequency, however, these quasi/formal-periodic oscillations cannot be observed. As the periodic number is increased, the thermal conductance undergoes a prominent transition from the decrease to the constant. We also observe other intriguing physics properties such as stop-frequency gaps and quantum thermal conductance in 3D periodic nanostructures. Some similarities and differences between 2D and 3D periodic systems are identified.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[3]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[4]   Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2012, 12 (06) :2826-2832
[5]   Phonon coherent resonance and its effect on thermal transport in core-shell nanowires [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (10)
[6]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[7]   Interfacial thermal conductance of partially unzipped carbon nanotubes: Linear scaling and exponential decay [J].
Chen, Xiaobin ;
Xu, Yong ;
Zou, Xiaolong ;
Gu, Bing-Lin ;
Duan, Wenhui .
PHYSICAL REVIEW B, 2013, 87 (15)
[8]   Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions [J].
Dubi, Yonatan ;
Di Ventra, Massimiliano .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :131-155
[9]  
Gotsmann B, 2013, NAT MATER, V12, P59, DOI [10.1038/NMAT3460, 10.1038/nmat3460]
[10]   Thermal conductivity of Si-Ge quantum dot superlattices [J].
Haskins, J. B. ;
Kinaci, A. ;
Cagin, T. .
NANOTECHNOLOGY, 2011, 22 (15)