Random incidence matrices: Moments of the spectral density

被引:77
|
作者
Bauer, M [1 ]
Golinelli, O [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
random graphs; random matrices; sparse matrices; incidence matrices spectrum; moments;
D O I
10.1023/A:1004879905284
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically and analytically the spectrum of incidence matrices of random labeled graphs on N vertices: any pair of vertices is connected by an edge with probability p. We give two algorithms to compute the moments of the eigenvalue distribution as explicit polynomials in iv and p. For large N and fixed p, the spectrum contains a large eigenvalue at Np and a semicircle of "small" eigenvalues. For large N and fixed average connectivity pN (dilute or sparse random mall ices limit) we show that the spectrum always contains a discrete component. An anomaly in the spectrum near eigenvalue 0 for connectivity close to c is observed. We develop recursion relations to compute the moments as explicit polynomials in pN. Their growth is slow enough so that they determine the spectrum. The extension of our methods to the Laplacian matrix is given in Appendix.
引用
收藏
页码:301 / 337
页数:37
相关论文
共 50 条
  • [31] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Cunden, Fabio Deelan
    Mezzadri, Francesco
    O'Connell, Neil
    Simm, Nick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (03) : 1091 - 1145
  • [32] MOMENTS FOR LEFT ELLIPTICALLY CONTOURED RANDOM MATRICES
    WONG, CS
    LIU, D
    JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 49 (01) : 1 - 23
  • [33] Asymptotic *-moments of some random Vandermonde matrices
    Boedihardjo, March
    Dykema, Ken
    ADVANCES IN MATHEMATICS, 2017, 318 : 1 - 45
  • [34] Logarithmic moments of characteristic polynomials of random matrices
    Brézin, E
    Hikami, S
    PHYSICA A, 2000, 279 (1-4): : 333 - 341
  • [35] Random symmetric matrices with a constraint:: The spectral density of random impedance networks -: art. no. 047101
    Stäring, J
    Mehlig, B
    Fyodorov, YV
    Luck, JM
    PHYSICAL REVIEW E, 2003, 67 (04): : 471011 - 471014
  • [36] Eigenvalues of model Hamiltonian matrices from spectral density distribution moments: The Heisenberg spin Hamiltonian
    Karwowski, J
    Bielinska-Waz, D
    Jurkowski, J
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1996, 60 (01) : 185 - 193
  • [38] Generating random density matrices
    Zyczkowski, Karol
    Penson, Karol A.
    Nechita, Ion
    Collins, Benoit
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
  • [39] Asymptotics of Random Density Matrices
    Ion Nechita
    Annales Henri Poincaré, 2007, 8 : 1521 - 1538
  • [40] Asymptotics of random density matrices
    Nechita, Ion
    ANNALES HENRI POINCARE, 2007, 8 (08): : 1521 - 1538