Random incidence matrices: Moments of the spectral density

被引:77
|
作者
Bauer, M [1 ]
Golinelli, O [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
random graphs; random matrices; sparse matrices; incidence matrices spectrum; moments;
D O I
10.1023/A:1004879905284
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study numerically and analytically the spectrum of incidence matrices of random labeled graphs on N vertices: any pair of vertices is connected by an edge with probability p. We give two algorithms to compute the moments of the eigenvalue distribution as explicit polynomials in iv and p. For large N and fixed p, the spectrum contains a large eigenvalue at Np and a semicircle of "small" eigenvalues. For large N and fixed average connectivity pN (dilute or sparse random mall ices limit) we show that the spectrum always contains a discrete component. An anomaly in the spectrum near eigenvalue 0 for connectivity close to c is observed. We develop recursion relations to compute the moments as explicit polynomials in pN. Their growth is slow enough so that they determine the spectrum. The extension of our methods to the Laplacian matrix is given in Appendix.
引用
收藏
页码:301 / 337
页数:37
相关论文
共 50 条
  • [21] SPECTRAL THEORY OF RANDOM MATRICES
    GIRKO, VL
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (01) : 77 - 120
  • [22] Spectral norm of random matrices
    Van H. Vu
    Combinatorica, 2007, 27 : 721 - 736
  • [23] Spectral norm of random matrices
    Vu, Van H.
    COMBINATORICA, 2007, 27 (06) : 721 - 736
  • [24] SPECTRAL THEORY OF RANDOM MATRICES
    GIRKO, VL
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1976, 21 (01) : 209 - 211
  • [25] Wigner random banded matrices with sparse structure: Local spectral density of states
    Fyodorov, YV
    Chubykalo, OA
    Izrailev, FM
    Casati, G
    PHYSICAL REVIEW LETTERS, 1996, 76 (10) : 1603 - 1606
  • [26] Canonical Moments and Random Spectral Measures
    Gamboa, F.
    Rouault, A.
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1015 - 1038
  • [27] JACOBI POLYNOMIAL MOMENTS AND PRODUCTS OF RANDOM MATRICES
    Gawronski, Wolfgang
    Neuschel, Thorsten
    Stivigny, Dries
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5251 - 5263
  • [28] Moments of Random Matrices and Hypergeometric Orthogonal Polynomials
    Fabio Deelan Cunden
    Francesco Mezzadri
    Neil O’Connell
    Nick Simm
    Communications in Mathematical Physics, 2019, 369 : 1091 - 1145
  • [29] Canonical Moments and Random Spectral Measures
    F. Gamboa
    A. Rouault
    Journal of Theoretical Probability, 2010, 23 : 1015 - 1038
  • [30] Estimates for moments of random matrices with Gaussian elements
    Khorunzhiy, Oleksiy
    SEMINAIRE DE PROBABILITES XLI, 2008, 1934 : 51 - 92