Nonequilibrium random telegraph switching in quantum point contacts

被引:5
作者
Smith, JC
Berven, C
Goodnick, SM
Wybourne, MN
机构
[1] OREGON STATE UNIV,CORVALLIS,OR 97331
[2] UNIV OREGON,DEPT PHYS,EUGENE,OR 97403
来源
PHYSICA B | 1996年 / 227卷 / 1-4期
关键词
nonequilibrium transport; quantum point contact; random telegraph noise;
D O I
10.1016/0921-4526(96)00398-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have investigated nonequilibrium transport through quantum point contact structures in high mobility GaAs/AlGaAs heterostructure. For low source-drain bias the current-voltage characteristics show the expected conductance quantization. At biases above approximately 6 mV, conductance instabilities in the DC current-voltage characteristics are observed which depend on the thermal and light exposure history of the sample. Time-dependent measurements in the regions of instability reveal that random telegraph switching (RTS) between well-defined differential conductance states is occurring. The RTS has been studied as a function of source-drain and gate bias, as well as temperature. The average time in the low and high states is found to depend exponentially on the source-drain and gate bias around some critical bias point. This critical point appears to correspond to a transition when an extra quasi one-dimensional subband crosses the Fermi level. The origin of the switching is believed to be associated with the charging and discharging of shallow donor defects due to DX centers in the AlGaAs.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [41] Random Telegraph Noise: Measurement, Data Analysis, and Interpretation
    Puglisi, Francesco Maria
    Padovani, Andrea
    Larcher, Luca
    Pavan, Paolo
    2017 IEEE 24TH INTERNATIONAL SYMPOSIUM ON THE PHYSICAL AND FAILURE ANALYSIS OF INTEGRATED CIRCUITS (IPFA), 2017,
  • [42] Neural network based analysis of random telegraph noise in resistive random access memories
    Gonzalez-Cordero, G.
    Gonzalez, M. B.
    Morell, A.
    Jimenez-Molinos, F.
    Campabadal, F.
    Roldan, J. B.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (02)
  • [43] In-Situ Control of Quantum Point Contacts Using Scanning Probe Microscopy Scratch Lithography
    Suda, Ryutaro
    Ohyama, Takahiro
    Tseng, Ampere A.
    Shirakashi, Jun-ichi
    2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2012,
  • [44] Wave-function mixing in strongly confined tunnel-coupled quantum point contacts
    Apetrii, G.
    Fischer, S. F.
    Kunze, U.
    Schuh, D.
    Abstreiter, G.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2) : 526 - 529
  • [45] Specular Electron Focusing between Gate-Defined Quantum Point Contacts in Bilayer Graphene
    Ingla-Aynes, Josep
    Manesco, Antonio L. R.
    Ghiasi, Talieh S. S.
    Volosheniuk, Serhii
    Watanabe, Kenji
    Taniguchi, Takashi
    van der Zant, Herre S. J.
    NANO LETTERS, 2023, 23 (12) : 5453 - 5459
  • [46] Systematic method for electrical characterization of random telegraph noise in MOSFETs
    Marquez, Carlos
    Rodriguez, Noel
    Gamiz, Francisco
    Ohata, Akiko
    SOLID-STATE ELECTRONICS, 2017, 128 : 115 - 120
  • [47] An Electrical Model for Trap Coupling Effects on Random Telegraph Noise
    Becker, Thales
    Li, Xuehua
    Alves, Pedro
    Wang, Tao
    Zhu, Kaichen
    Xiao, Yiping
    Wirth, Gilson
    Lanza, Mario
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (10) : 1596 - 1599
  • [48] Random Telegraph Signal Noise in Phase Change Memory Devices
    Fugazza, Davide
    Ielmini, Daniele
    Lavizzari, Simone
    Lacaita, Andrea L.
    2010 INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2010, : 743 - 749
  • [49] Employing the empirical mode decomposition to denoise the random telegraph noise
    Moshrefi A.
    Aghababa H.
    Shoaei O.
    International Journal of Engineering, Transactions A: Basics, 2021, 34 (01): : 90 - 96
  • [50] Random-Telegraph-Noise by Resonant Tunnelling at Low Temperatures
    Li, Z.
    Sotto, M.
    Liu, F.
    Husain, M. K.
    Zeimpekis, I.
    Yoshimoto, H.
    Tani, K.
    Sasago, Y.
    Hisamoto, D.
    Fletcher, J. D.
    Kataoka, M.
    Tsuchiya, Y.
    Saito, S.
    2017 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM), 2017, : 172 - 174