Nonequilibrium random telegraph switching in quantum point contacts

被引:5
|
作者
Smith, JC
Berven, C
Goodnick, SM
Wybourne, MN
机构
[1] OREGON STATE UNIV,CORVALLIS,OR 97331
[2] UNIV OREGON,DEPT PHYS,EUGENE,OR 97403
来源
PHYSICA B | 1996年 / 227卷 / 1-4期
关键词
nonequilibrium transport; quantum point contact; random telegraph noise;
D O I
10.1016/0921-4526(96)00398-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We have investigated nonequilibrium transport through quantum point contact structures in high mobility GaAs/AlGaAs heterostructure. For low source-drain bias the current-voltage characteristics show the expected conductance quantization. At biases above approximately 6 mV, conductance instabilities in the DC current-voltage characteristics are observed which depend on the thermal and light exposure history of the sample. Time-dependent measurements in the regions of instability reveal that random telegraph switching (RTS) between well-defined differential conductance states is occurring. The RTS has been studied as a function of source-drain and gate bias, as well as temperature. The average time in the low and high states is found to depend exponentially on the source-drain and gate bias around some critical bias point. This critical point appears to correspond to a transition when an extra quasi one-dimensional subband crosses the Fermi level. The origin of the switching is believed to be associated with the charging and discharging of shallow donor defects due to DX centers in the AlGaAs.
引用
收藏
页码:197 / 201
页数:5
相关论文
共 50 条
  • [1] Resistive Switching Devices Producing Giant Random Telegraph Noise
    Becker, Thales
    Li, Xuehua
    Moser, Eduardo
    Alves, Pedro
    Wirth, Gilson
    Lanza, Mario
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (01) : 146 - 149
  • [2] Freely suspended quantum point contacts
    Roessler, C.
    Herz, M.
    Bichler, M.
    Ludwig, S.
    SOLID STATE COMMUNICATIONS, 2010, 150 (17-18) : 861 - 864
  • [3] Conductance Anomalies in Quantum Point Contacts
    Frucci, G.
    Di Gaspare, L.
    Notargiacomo, A.
    Spirito, D.
    Evangelisti, F.
    Di Gaspare, A.
    Giovine, E.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 190 - 193
  • [4] The influence of Coulomb interaction in quantum point contacts
    Morimoto, T.
    Hemmi, M.
    Naito, R.
    Aoki, N.
    Bird, J. P.
    Ochiai, Y.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2) : 557 - 559
  • [5] Superconducting quantum point contacts and maxwell potential
    Aly, Arafa H.
    Douari, Jamila
    MODERN PHYSICS LETTERS B, 2007, 21 (12): : 703 - 715
  • [6] Fabrication of quantum point contacts and quantum dots by imprint lithography
    Martini, I
    Kamp, M
    Fischer, F
    Worschech, L
    Koeth, J
    Forchel, A
    MICROELECTRONIC ENGINEERING, 2001, 57-8 : 397 - 403
  • [7] Transport Through Magnetic Quantum Point Contacts
    Day, Timothy E.
    Cummings, Aron W.
    Burke, Adam M.
    Ferry, David K.
    Goodnick, Stephen M.
    Reno, John L.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 911 - 914
  • [8] Analysis of random telegraph noise observed in semiconducting carbon nanotube quantum dots
    Jhang, Sung Ho
    SYNTHETIC METALS, 2014, 198 : 118 - 121
  • [9] Probing dopants in wide semiconductor quantum point contacts
    Yakimenko, I. I.
    Berggren, K-F
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (10)
  • [10] Electrostatically Induced Quantum Point Contacts in Bilayer Graphene
    Overweg, Hiske
    Eggimann, Hannah
    Chen, Xi
    Slizovskiy, Sergey
    Eich, Marius
    Pisoni, Riccardo
    Lee, Yongjin
    Rickhaus, Peter
    Watanabe, Kenji
    Taniguch, Takashi
    Fal'ko, Vladimir
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2018, 18 (01) : 553 - 559