Atomistic simulations of phonon behaviors in isotopically doped graphene with Sierpinski carpet fractal structure

被引:10
作者
Han, Dan [1 ]
Fan, Hongzhao [1 ]
Wang, Xinyu [1 ]
Cheng, Lin [2 ]
机构
[1] Shandong Univ, Inst Thermal Sci & Technol, Jinan 250061, Shandong, Peoples R China
[2] Shandong Inst Adv Technol, Jinan 250100, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
isotopic doping; graphene monolayer; Sierpinski Carpet fractal structure; phonon behaviors; atomistic simulations; THERMAL-CONDUCTIVITY; TRANSPORT; SINGLE; DYNAMICS; REDUCTION;
D O I
10.1088/2053-1591/ab7e4b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional (2D) graphene monolayer has been attached importance because of the fantastic physical properties. In this work, we conduct the atomistic simulations to evaluate the phonon behaviors in isotopically doped graphene with Sierpinski Carpet (SC) fractal structure. The thermal conductivities (k) with different fractal numbers are calculated by molecular dynamics simulation. The relationship between the k and the fractal number from 0 to 8 shows a first decreasing and then stable trend. The maximum reduction ratio of the k in SC fractal structures is 52.37%. Afterwards, we utilize the molecular dynamics simulation, phonon wave packet simulation and lattice dynamics simulation to investigate the phonon density of states (PDOS), energy transmission coefficient (ETC), phonon group velocity and participation ratio (PR) in SC fractal structures. In SC fractal structures, the PDOS increases in the low frequency region and the G-band will soften with the enhanced fractal number. We also observe that the isotopic doping atoms can lead to continuous reflected waves in SC fractal structure regions. Moreover, phonon modes in SC fractal structures possess the lower ETCs, phonon group velocities and PRs in comparison with the pristine graphene monolayer. Therefore, we attribute the lower k in SC fractal structures to the stronger phonon-impurity scattering and the increasing localized phonon modes.
引用
收藏
页数:11
相关论文
共 48 条
[1]   METALLIZED FOAMS FOR ANTENNA DESIGN: APPLICATION TO FRACTAL-SHAPED SIERPINSKI-CARPET MONOPOLE [J].
Anguera, J. ;
Daniel, J. -P. ;
Borja, C. ;
Mumbru, J. ;
Puente, C. ;
Leduc, T. ;
Sayegrih, K. ;
Van Roy, P. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2010, 104 :239-251
[2]   Enhancement of graphene thermoelectric performance through defect engineering [J].
Anno, Yuki ;
Imakita, Yuki ;
Takei, Kuniharu ;
Akita, Seiji ;
Arie, Takayuki .
2D MATERIALS, 2017, 4 (02)
[3]  
[Anonymous], 1982, FRACTAL GEOMETRY NAT
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Thermal transport engineering in amorphous graphene: Non-equilibrium molecular dynamics study [J].
Bazrafshan, Saeed ;
Rajabpour, Ali .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 :379-386
[6]   Remarkable Reduction of Thermal Conductivity in Silicon Nanotubes [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANO LETTERS, 2010, 10 (10) :3978-3983
[7]   Small-Size Microstrip Patch Antennas Combining Koch and Sierpinski Fractal-Shapes [J].
Chen, Wen-Ling ;
Wang, Guang-Ming ;
Zhang, Chen-Xin .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2008, 7 :738-741
[8]   Phonon wave interference in graphene and boron nitride superlattice [J].
Chen, Xue-Kun ;
Xie, Zhong-Xiang ;
Zhou, Wu-Xing ;
Tang, Li-Ming ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2016, 109 (02)
[9]   Thermal transport in C3N nanotube: a comparative study with carbon nanotube [J].
Cheng, Xu ;
Wang, Xinyu .
NANOTECHNOLOGY, 2019, 30 (25)
[10]   Thermal Conductivity of Graphene Wrinkles: A Molecular Dynamics Simulation [J].
Cui, Liu ;
Du, Xiaoze ;
Wei, Gaosheng ;
Feng, Yanhui .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (41) :23807-23812