TIPS: trajectory inference of pathway significance through pseudotime comparison for functional assessment of single-cell RNAseq data

被引:8
作者
Zheng, Zihan
Xin, Qiu
Wu, Haiyang
Chang, Ling [1 ]
Tang, Xiangyu [1 ]
Zou, Liyun [1 ]
Li, Jingyi
Wu, Yuzhang [2 ]
Zhou, Jianzhi [3 ]
Shan, Jiang [4 ]
Wan, Ying [5 ]
Ni, Qingshan [1 ]
机构
[1] Army Med Univ, Rawalpindi, Pakistan
[2] Army Med Univ, Immunol Inst, Rawalpindi, Pakistan
[3] Biowavelet Ltd, Beijing, Peoples R China
[4] Shenzhen Univ, Shenzhen, Peoples R China
[5] Army Med Univ, Biomed Anal Ctr, Rawalpindi, Pakistan
基金
美国国家科学基金会;
关键词
trajectory mapping pseudotime; TIPS; pathway analysis; T-CELLS; EXPRESSION; DYNAMICS;
D O I
10.1093/bib/bbab124
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advances in bioinformatics analyses have led to the development of novel tools enabling the capture and trajectory mapping of single-cell RNA sequencing (scRNAseq) data. However, there is a lack of methods to assess the contributions of biological pathways and transcription factors to an overall developmental trajectory mapped from scRNAseq data. In this manuscript, we present a simplified approach for trajectory inference of pathway significance (TIPS) that leverages existing knowledgebases of functional pathways and other gene lists to provide further mechanistic insights into a biological process. TIPS identifies key pathways which contribute to a process of interest, as well as the individual genes that best reflect these changes. TIPS also provides insight into the relative timing of pathway changes, as well as a suite of visualizations to enable simplified data interpretation of scRNAseq libraries generated using a wide range of techniques. The TIPS package can be run through either a web server or downloaded as a user-friendly GUI run in R, and may serve as a useful tool to help biologists perform deeper functional analyses and visualization of their single-cell data.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
Aibar, 2016, AUCELL ANAL GENE SET
[2]  
Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
[3]  
Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1
[4]   MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions [J].
Baran, Yael ;
Bercovich, Akhiad ;
Sebe-Pedros, Arnau ;
Lubling, Yaniv ;
Giladi, Amir ;
Chomsky, Elad ;
Meir, Zohar ;
Hoichman, Michael ;
Lifshitz, Aviezer ;
Tanay, Amos .
GENOME BIOLOGY, 2019, 20 (01)
[5]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[6]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[7]   switchde: inference of switch-like differential expression along single-cell trajectories [J].
Campbell, Kieran R. ;
Yau, Christopher .
BIOINFORMATICS, 2017, 33 (08) :1241-1242
[8]   CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes [J].
Efremova, Mirjana ;
Vento-Tormo, Miquel ;
Teichmann, Sarah A. ;
Vento-Tormo, Roser .
NATURE PROTOCOLS, 2020, 15 (04) :1484-1506
[9]   Islet inflammation in type 2 diabetes and physiology [J].
Eguchi, Kosei ;
Nagai, Ryozo .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (01) :14-23
[10]   GSVA: gene set variation analysis for microarray and RNA-Seq data [J].
Haenzelmann, Sonja ;
Castelo, Robert ;
Guinney, Justin .
BMC BIOINFORMATICS, 2013, 14