Data-Driven Generation of Medical-Research Hypotheses in Cancer Patients

被引:0
|
作者
Chang, Hsin-Hsiung [1 ,2 ]
Chiang, Jung-Hsien [1 ]
Chu, Cheng-Chung [3 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[2] Paochien Hosp, Dept Internal Med, Div Nephrol, Pingtung, Taiwan
[3] Tunghai Univ, Dept Comp Sci, Taichung, Taiwan
来源
2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021) | 2021年
关键词
National Health Insurance Research Database; Apriori algorithm; Renal cell cancer; Dialysis; CARE;
D O I
10.1109/COMPSAC51774.2021.00091
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Hypotheses are the most important part of medical research. If we have a good hypothesis, we can design experiments and verify it. Therefore, we use the associations generated by association rule as hypotheses in clinical medicine research. We hope this method can help physicians quickly and correctly find research hypotheses. This experiment was divided into two parts. In the first part, we used the Apriori algorithm to find associations between cancer and other catastrophic illnesses. In the second part, we used these associations as medical-research hypotheses and designed cohort studies to verify them. In this study, we proved that the association-rules method could help clinical physicians quickly and correctly obtain clinical-medicine hypotheses.
引用
收藏
页码:626 / 631
页数:6
相关论文
共 50 条
  • [31] A New Era of Data-Driven Cancer Research and Care: Opportunities and Challenges
    Gomez, Felicia
    Danos, Arpad M.
    Del Fiol, Guilherme
    Madabhushi, Anant
    Tiwari, Pallavi
    McMichael, Joshua F.
    Bakas, Spyridon
    Bian, Jiang
    Davatzikos, Christos
    Fertig, Elana J.
    Kalpathy-Cramer, Jayashree
    Kenney, Johanna
    Savova, Guergana K.
    Yetisgen, Meliha
    Van Allen, Eliezer M.
    Warner, Jeremy L.
    Prior, Fred
    Griffith, Malachi
    Griffith, Obi L.
    CANCER DISCOVERY, 2024, 14 (10) : 1774 - 1778
  • [32] Integrative computational epigenomics to build data-driven gene regulation hypotheses
    Chen, Tyrone
    Tyagi, Sonika
    GIGASCIENCE, 2020, 9 (06):
  • [33] A data-driven methodology towards evaluating the potential of drug repurposing hypotheses
    Prieto Santamaría, Lucía
    Ugarte Carro, Esther
    Díaz Uzquiano, Marina
    Menasalvas Ruiz, Ernestina
    Pérez Gallardo, Yuliana
    Rodríguez-González, Alejandro
    Computational and Structural Biotechnology Journal, 2021, 19 : 4559 - 4573
  • [34] A data-driven methodology towards evaluating the potential of drug repurposing hypotheses
    Prieto Santamaria, Lucia
    Ugarte Carro, Esther
    Diaz Uzquiano, Marina
    Menasalvas Ruiz, Ernestina
    Perez Gallardo, Yuliana
    Rodriguez-Gonzalez, Alejandro
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4559 - 4573
  • [35] Computational ecosystems for data-driven medical genomics
    Almeida, Jonas S.
    GENOME MEDICINE, 2010, 2
  • [36] Multimedia medical data-driven decision making
    Chakraborty, Chinmay
    Divan, Mario Jose
    Mahmoudi, Said
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 41781 - 41783
  • [37] Computational ecosystems for data-driven medical genomics
    Jonas S Almeida
    Genome Medicine, 2
  • [38] Multimedia medical data-driven decision making 
    Chinmay Chakraborty
    Mario José Diván
    Saïd Mahmoudi
    Multimedia Tools and Applications, 2022, 81 : 41781 - 41783
  • [39] OM Research: From Problem-Driven to Data-Driven Research
    Simchi-Levi, David
    M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2014, 16 (01) : 2 - 10
  • [40] Data-Driven Approach for Human Locomotion Generation
    Kim, Yejin
    Kim, Myunggyu
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2015, 15 (02)