High-order zero-dissipative Runge-Kutta-Nystrom methods

被引:7
|
作者
Tsitouras, C [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, GR-15780 Athens, Greece
关键词
second-order ODE; dissipation error; periodic problems;
D O I
10.1016/S0377-0427(98)00081-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new Runge-Kutta-Nystrom pair of orders eight and six is presented here. Its main advantage is that it is of zero dissipation so it possesses an interval of periodicity. Numerical results over a set of problems demonstrate the superiority of the method in problems with periodic solution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 50 条
  • [1] INTERPOLATING RUNGE-KUTTA-NYSTROM METHODS OF HIGH-ORDER
    TSITOURAS, C
    PAPAGEORGIOU, G
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 47 (3-4) : 209 - 217
  • [2] HIGH-ORDER SYMPLECTIC RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05): : 1237 - 1252
  • [3] A Zero-Dissipative Runge-Kutta-Nystrom Method with Minimal Phase-Lag
    Senu, Norazak
    Suleiman, Mohamed
    Ismail, Fudziah
    Othman, Mohamed
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [4] High-order Runge-Kutta-Nystrom geometric methods with processing
    Blanes, S
    Casas, F
    Ros, J
    APPLIED NUMERICAL MATHEMATICS, 2001, 39 (3-4) : 245 - 259
  • [5] EXPLICIT, HIGH-ORDER RUNGE-KUTTA-NYSTROM METHODS FOR PARALLEL COMPUTERS
    SOMMEIJER, BP
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 221 - 240
  • [6] HIGH-ORDER EMBEDDED RUNGE-KUTTA-NYSTROM FORMULAS
    DORMAND, JR
    ELMIKKAWY, MEA
    PRINCE, PJ
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (04) : 423 - 430
  • [7] A Zero-Dissipative Phase-Fitted Fourth Order Diagonally Implicit Runge-Kutta-Nystrom Method for Solving Oscillatory Problems
    Moo, K. W.
    Senu, N.
    Ismail, F.
    Suleiman, M.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [8] On high order Runge-Kutta-Nystrom pairs
    Simos, T. E.
    Tsitouras, Ch
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400
  • [9] Stable Runge-Kutta-Nystrom methods for dissipative stiff problems
    Alonso-Mallo, I.
    Cano, B.
    Moreta, M. J.
    NUMERICAL ALGORITHMS, 2006, 42 (02) : 193 - 203
  • [10] ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    BIT, 1992, 32 (01): : 131 - 142