A Spike Neural Network Model for Lateral Suppression of Spike-Timing-Dependent Plasticity with Adaptive Threshold

被引:3
作者
Zhong, Xueyan [1 ,2 ]
Pan, Hongbing [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[2] Nanjing Vocat Inst Railway Technol, Coll Intelligent Engn, Nanjing 210031, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 12期
关键词
Spike Neural Network; spike-timing-dependent plasticity; lateral inhibition; adaptive threshold; Leaky Integrate-and-Fire; pulse coding; STDP;
D O I
10.3390/app12125980
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aiming at the practical constraints of high resource occupancy and complex calculations in the existing Spike Neural Network (SNN) image classification model, in order to seek a more lightweight and efficient machine vision solution, this paper proposes an adaptive threshold Spike Neural Network (SNN) model of lateral inhibition of Spike-Timing-Dependent Plasticity (STDP). The conversion from grayscale image to pulse sequence is completed by convolution normalization and first pulse time coding. The network self-classification is realized by combining the classical Spike-Timing-Dependent Plasticity algorithm (STDP) and lateral suppression algorithm. The occurrence of overfitting is effectively suppressed by introducing an adaptive threshold. The experimental results on the MNIST data set show that compared with the traditional SNN classification model, the complexity of the weight update algorithm is reduced from O(n(2)) to O(1), and the accuracy rate can still remain stable at about 96%. The provided model is conducive to the migration of software algorithms to the bottom layer of the hardware platform, and can provide a reference for the realization of edge computing solutions for small intelligent hardware terminals with high efficiency and low power consumption.
引用
收藏
页数:11
相关论文
共 30 条
[1]   ECG Classification Algorithm Based on STDP and R-STDP Neural Networks for Real-Time Monitoring on Ultra Low-Power Personal Wearable Devices [J].
Amirshahi, Alireza ;
Hashemi, Matin .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (06) :1483-1493
[2]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[3]   Information theory and neural coding [J].
Borst, A ;
Theunissen, FE .
NATURE NEUROSCIENCE, 1999, 2 (11) :947-957
[4]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[5]   Unsupervised learning of digit recognition using spike-timing-dependent plasticity [J].
Diehl, Peter U. ;
Cook, Matthew .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2015, 9
[6]   EEG-Based Spatio-Temporal Convolutional Neural Network for Driver Fatigue Evaluation [J].
Gao, Zhongke ;
Wang, Xinmin ;
Yang, Yuxuan ;
Mu, Chaoxu ;
Cai, Qing ;
Dang, Weidong ;
Zuo, Siyang .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (09) :2755-2763
[7]   Quantized STDP-based online-learning spiking neural network [J].
Hu, S. G. ;
Qiao, G. C. ;
Chen, T. P. ;
Yu, Q. ;
Liu, Y. ;
Rong, L. M. .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19) :12317-12332
[8]   Quantized Weight Transfer Method Using Spike-Timing-Dependent Plasticity for Hardware Spiking Neural Network [J].
Hwang, Sungmin ;
Kim, Hyungjin ;
Park, Byung-Gook .
APPLIED SCIENCES-BASEL, 2021, 11 (05) :1-10
[9]   NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data [J].
Kasabov, Nikola K. .
NEURAL NETWORKS, 2014, 52 :62-76
[10]   STDP-based spiking deep convolutional neural networks for object recognition [J].
Kheradpisheh, Saeed Reza ;
Ganjtabesh, Mohammad ;
Thorpe, Simon J. ;
Masquelier, Timothee .
NEURAL NETWORKS, 2018, 99 :56-67