Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion

被引:48
作者
Pinholt, Henrik D. [1 ,2 ]
Bohr, Soren S-R [1 ,2 ]
Iversen, Josephine F. [1 ,2 ]
Boomsma, Wouter [3 ]
Hatzakis, Nikos S. [1 ,2 ,4 ]
机构
[1] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Nanosci Ctr, DK-2100 Copenhagen, Denmark
[3] Univ Copenhagen, Dept Comp Sci, DK-2100 Copenhagen, Denmark
[4] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Fac Hlth & Med Sci, DK-2200 Copenhagen, Denmark
关键词
fingerprinting; single-particle tracking; machine learning; fluorescence microscopy; stochastic processes; TRACKING; MOLECULE; IDENTIFICATION; SEGMENTATION; ALGORITHM; DELIVERY; MOTION; STATES;
D O I
10.1073/pnas.2104624118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-particle tracking (SPT) is a key tool for quantitative analysis of dynamic biological processes and has provided unprecedented insights into a wide range of systems such as receptor local-ization, enzyme propulsion, bacteria motility, and drug nanocar-rier delivery. The inherently complex diffusion in such biological systems can vary drastically both in time and across systems, consequently imposing considerable analytical challenges, and currently requires an a priori knowledge of the system. Here we introduce a method for SPT data analysis, processing, and classification, which we term "diffusional fingerprinting." This method allows for dissecting the features that underlie diffu-sional behavior and establishing molecular identity, regardless of the underlying diffusion type. The method operates by isolat-ing 17 descriptive features for each observed motion trajectory and generating a diffusional map of all features for each type of particle. Precise classification of the diffusing particle identity is then obtained by training a simple logistic regression model. A linear discriminant analysis generates a feature ranking that outputs the main differences among diffusional features, pro-viding key mechanistic insights. Fingerprinting operates by both training on and predicting experimental data, without the need for pretraining on simulated data. We found this approach to work across a wide range of simulated and experimentally diverse systems, such as tracked lipases on fat substrates, transcription factors diffusing in cells, and nanoparticles diffusing in mucus. This flexibility ultimately supports diffusional fingerprinting's util-ity as a universal paradigm for SPT diffusional analysis and prediction.
引用
收藏
页数:7
相关论文
共 63 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields [J].
Agbleke, Andrews Akwasi ;
Amitai, Assaf ;
Buenrostro, Jason D. ;
Chakrabarti, Aditi ;
Chu, Lingluo ;
Hansen, Anders S. ;
Koenig, Kristen M. ;
Labade, Ajay S. ;
Liu, Sirui ;
Nozaki, Tadasu ;
Ovchinnikov, Sergey ;
Seeber, Andrew ;
Shaban, Haitham A. ;
Spille, Jan-Hendrik ;
Stephens, Andrew D. ;
Su, Jun-Han ;
Wadduwage, Dushan .
MOLECULAR CELL, 2020, 79 (06) :881-901
[3]   CADEE: Computer-Aided Directed Evolution of Enzymes [J].
Amrein, Beat Anton ;
Steffen-Munsberg, Fabian ;
Szeler, Ireneusz ;
Purg, Miha ;
Kulkarni, Yashraj ;
Kamerlin, Shina Caroline Lynn .
IUCRJ, 2017, 4 :50-64
[4]   Particle Mobility Analysis Using Deep Learning and the Moment Scaling Spectrum [J].
Arts, Marloes ;
Smal, Ihor ;
Paul, Maarten W. ;
Wyman, Claire ;
Meijering, Erik .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Measurement of anomalous diffusion using recurrent neural networks [J].
Bo, Stefano ;
Schmidt, Falko ;
Eichhorn, Ralf ;
Volpe, Giovanni .
PHYSICAL REVIEW E, 2019, 100 (01)
[6]   Direct observation of Thermomyces lanuginosus lipase diffusional states by Single Particle Tracking and their remodeling by mutations and inhibition [J].
Bohr, Soren S-R ;
Lund, Philip M. ;
Kallenbach, Amalie S. ;
Pinholt, Henrik ;
Thomsen, Johannes ;
Iversen, Lars ;
Svendsen, Allan ;
Christensen, Sune M. ;
Hatzakis, Nikos S. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Statistical analysis of particle trajectories in living cells [J].
Briane, Vincent ;
Kervrann, Charles ;
Vimond, Myriam .
PHYSICAL REVIEW E, 2018, 97 (06)
[8]   Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach [J].
Burnecki, Krzysztof ;
Kepten, Eldad ;
Garini, Yuval ;
Sikora, Grzegorz ;
Weron, Aleksander .
SCIENTIFIC REPORTS, 2015, 5
[9]   Universal Algorithm for Identification of Fractional Brownian Motion. A Case of Telomere Subdiffusion [J].
Burnecki, Krzysztof ;
Kepten, Eldad ;
Janczura, Joanna ;
Bronshtein, Irena ;
Garini, Yuval ;
Weron, Aleksander .
BIOPHYSICAL JOURNAL, 2012, 103 (09) :1839-1847
[10]   A review of audio fingerprinting [J].
Cano, P ;
Batlle, E ;
Kalker, T ;
Haitsma, J .
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2005, 41 (03) :271-284