Preterm birth anticipation is a crucial task that can reduce both the rate and the complications of preterm birth. Electrohysterogram (EHG) or uterine electromyogram (EMG) data have shown that they can provide useful information for preterm birth anticipation. Four distinct time-domain features (mean absolute value, average amplitude change, difference in absolute standard deviation value, and log detector) that are commonly applied to EMG signal processing were utilized and investigated in this study. A single channel of EHG data was decomposed into its constituent components (i.e., into intrinsic mode functions) by using empirical mode decomposition (EMD) before their time-domain features were extracted. The time-domain features of the intrinsic mode functions of the EHG data associated with preterm and term births were applied for preterm-term birth classification by using a support vector machine with a radial basis function. The preterm-term birth classifications were validated by using 10-fold cross validation. From the computational results, it was shown that excellent preterm-term birth classification can be achieved by using single-channel EHG data. The computational results further suggested that the best overall performance concerning preterm-term birth classification was obtained when thirteen (out of sixteen) EMD-based time-domain features were applied. The best accuracy, sensitivity, specificity, and F-1-score achieved were 0.9382, 0.9130, 0.9634, and 0.9366, respectively.