The ICECool Fundamentals Effort on Evaporative Cooling of Microelectronics

被引:36
作者
Bar-Cohen, Avram [1 ]
Asheghi, Mehdi [2 ]
Chainer, Timothy J. [3 ]
Garimella, Suresh, V [4 ]
Goodson, Kenneth [2 ]
Gorle, Catherine [5 ]
Mandel, Raphael [6 ]
Maurer, Joseph J. [7 ]
Ohadi, Michael [6 ]
Palko, James W. [8 ]
Parida, Pritish R. [3 ]
Peles, Yoav [9 ]
Plawsky, Joel L. [10 ]
Schultz, Mark D. [3 ]
Weibel, Justin A. [11 ]
Joshi, Yogendra [12 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Purdue Univ, Dept Mech Engn, W Lafayette, IN 47907 USA
[5] Stanford Univ, Dept Civil Engn, Stanford, CA 94305 USA
[6] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[7] MBO Partners, Arlington, VA 22202 USA
[8] UC Merced, Dept Mech Engn, Merced, CA 95343 USA
[9] Univ Cent Florida, Dept Mech Engn, Orlando, FL 32816 USA
[10] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
[11] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[12] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA
来源
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY | 2021年 / 11卷 / 10期
基金
美国国家科学基金会;
关键词
Heating systems; Substrates; Cooling; Heat sinks; Heat transfer; Pins; Thermal management; Chip cooling; evaporative cooling; thermal management; two-phase thermal modeling; CONVECTIVE HEAT-TRANSFER; SINK ARRAY; FLOW; MICROCHANNEL; PPF;
D O I
10.1109/TCPMT.2021.3111114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Intrachip Enhanced Cooling Fundamentals (ICECool Fun) effort was launched by the Defense Advanced Research Projects Agency (DARPA) under the leadership of Dr. Avram Bar-Cohen during 2012-2015 to target an order of magnitude improvement in chip level and hot spot heat fluxes, compared to the then state-of-the-art (SOA). Evaporative cooling technologies to achieve potential targets of 1 kW/cm(2) at the chip level and 5 kW/cm(2) at the hot spot level were targeted. A key goal was to improve fundamental understanding of the evaporative cooling physics at the relevant scales, and a numerical modeling capability to enable the co-design of such solutions in emerging computing and communications systems. A summary of the five projects pursued under this effort is provided, including the key accomplishments and developed capabilities.
引用
收藏
页码:1546 / 1564
页数:19
相关论文
共 66 条
  • [1] [Anonymous], 2018, ENCY 2 PHASE HEAT TR
  • [2] [Anonymous], 2014, P 4 EUR C MICR LIM I
  • [3] Flow boiling of R245fa in a microgap with staggered circular cylindrical pin fins
    Asrar, Pouya
    Zhang, Xuchen
    Green, Craig E.
    Bakir, Muhannad
    Joshi, Yogendra K.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 121 : 329 - 342
  • [4] Design, Fabrication, and Characterization of a Compact Hierarchical Manifold Microchannel Heat Sink Array for Two-Phase Cooling
    Back, Doosan
    Drummond, Kevin P.
    Sinanis, Michael D.
    Weibel, Justin A.
    Garimella, Suresh V.
    Peroulis, Dimitrios
    Janes, David B.
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2019, 9 (07): : 1291 - 1300
  • [5] Bae D, 2017, PROC ASME INT TECH C
  • [6] Bae DG, 2017, INTERSOC C THERMAL T, P466
  • [7] Embedded Cooling for Wide Bandgap Power Amplifiers: A Review
    Bar-Cohen, A.
    Maurer, J. J.
    Altman, D. H.
    [J]. JOURNAL OF ELECTRONIC PACKAGING, 2019, 141 (04)
  • [8] Bar-Cohen A, DARPA BAA 13 21 INTR
  • [9] Improving Data Center Energy Efficiency With Advanced Thermal Management
    Chainer, Timothy J.
    Schultz, Mark D.
    Parida, Pritish R.
    Gaynes, Michael A.
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2017, 7 (08): : 1228 - 1239
  • [10] Deisenroth DC, 2016, INTERSOC C THERMAL T, P1072, DOI 10.1109/ITHERM.2016.7517666