Bohr Inequality for Odd Analytic Functions

被引:62
|
作者
Kayumov, Ilgiz R. [1 ]
Ponnusamy, Saminathan [2 ]
机构
[1] Kazan Fed Univ, Kremlevskaya 18, Kazan 420008, Russia
[2] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
基金
俄罗斯基础研究基金会;
关键词
Analytic functions; p-symmetric functions; Bohr's inequality; Schwarz lemma; Subordination and odd univalent functions; THEOREM;
D O I
10.1007/s40315-017-0206-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the Bohr radius for the class of odd functions f satisfying vertical bar f (z)vertical bar <= 1 for all vertical bar z vertical bar < 1, solving the recent problem of Ali et al. ( J Math Anal Appl 449(1): 154-167, 2017). In fact, we solve this problem in a more general setting. Then we discuss Bohr's radius for the class of analytic functions g, when g is subordinate to a member of the class of odd univalent functions.
引用
收藏
页码:679 / 688
页数:10
相关论文
共 50 条
  • [1] Bohr Inequality for Odd Analytic Functions
    Ilgiz R Kayumov
    Saminathan Ponnusamy
    Computational Methods and Function Theory, 2017, 17 : 679 - 688
  • [2] Refined Bohr inequality for bounded analytic functions
    Liu, Gang
    Liu, Zhihong
    Ponnusamy, Saminathan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [3] Bohr's inequalities for the analytic functions with lacunary series and harmonic functions
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 465 (02) : 857 - 871
  • [4] Bohr Radius for Certain Analytic Functions
    Jain, Naveen Kumar
    Yadav, Shalu
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 211 - 221
  • [5] The Bohr operator on analytic functions and sections
    Abu-Muhanna, Yusuf
    Ali, Rosihan M.
    Lee, See Keong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [6] Some Sharp Bohr-Type Inequalities for Analytic Functions
    Hu, Xiaojun
    Long, Boyong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [7] BOHR PHENOMENON FOR THE SPECIAL FAMILY OF ANALYTIC FUNCTIONS AND HARMONIC MAPPINGS
    Alkhaleefah, S. A.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (03): : 3 - 13
  • [8] Bohr-type inequalities of analytic functions
    Liu, Ming-Sheng
    Shang, Yin-Miao
    Xu, Jun-Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] The Bohr phenomenon for analytic functions on shifted disks
    Ahamed, Molla Basir
    Allu, Vasudevarao
    Halder, Himadri
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 103 - 120
  • [10] Improved Bohr inequality for harmonic mappings
    Liu, Gang
    Ponnusamy, Saminathan
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) : 716 - 731