Data Driven Calibration and Control of Compact Lightweight Series Elastic Actuators for Robotic Exoskeleton Gloves

被引:0
|
作者
Guo, Yunfei [1 ]
Xu, Wenda [2 ]
Pradhan, Sarthark [2 ]
Bravo, Cesar [3 ]
Ben-Tzvi, Pinhas [2 ,4 ]
机构
[1] Virginia Tech, Elect & Comp Engn Dept, Blacksburg, VA 24060 USA
[2] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24060 USA
[3] Virginia Tech, Carilion Sch Med, Carilion Clin Inst Orthopaed & Neurosci, Roanoke, VA 24016 USA
[4] Virginia Tech, Dept Elect Engn, Blacksburg, VA 24060 USA
基金
美国国家卫生研究院;
关键词
Force; Exoskeletons; Force measurement; Couplings; Shafts; Sea measurements; Actuators; Tactile sensor; SEA calibration; exoskeleton glove; DESIGN; FORCE;
D O I
10.1109/JSEN.2021.3101143
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The working principle of a SEA is based on using an elastic material connected serially to the mechanical power source to simulate the dynamic behavior of a human muscle. Due to weight and size limitations of a wearable robotic exoskeleton, the hardware design of the SEA is limited. Compact and lightweight SEAs usually have noisy signal output, and can easily be deformed. This paper uses a compact lightweight SEA designed for exoskeleton gloves to demonstrate immeasurable strain and friction force which can cause an average of 34.31% and maximum of 44.7% difference in force measurement on such SEAs. This paper proposes two data driven machine learning methods to accurately calibrate and control SEAs. The multi-layer perception (MLP) method can reduce the average force measurement error to 10.18% and maximum error to 29.13%. The surface fitting method (SF) method can reduce the average force measurement error to 8.06% and maximum error to 35.72%. In control experiments, the weighted MLP method achieves an average of 0.21N force control difference, and the SF method achieves an average of 0.29N force control difference on the finger tips of the exoskeleton glove.
引用
收藏
页码:21120 / 21130
页数:11
相关论文
共 50 条
  • [21] A Model Inversion Procedure for Control of Nonlinear Series Elastic Actuators
    Jarrett, Christopher
    McDaid, Andrew
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2019, : 453 - 458
  • [22] Motion Control of Series-Elastic Actuators
    Haninger, Kevin
    Lu, Junkai
    Tomizuka, Masayoshi
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4373 - 4378
  • [23] Compact Series Elastic Actuator for a Wrist Exoskeleton for Daily Living Assistance
    Botta, Andrea
    Tagliavini, Luigi
    Colucci, Giovanni
    Baglieri, Lorenzo
    Duretto, Simone
    Takeda, Yukio
    Quaglia, Giuseppe
    ADVANCES IN ITALIAN MECHANISM SCIENCE, IFTOMM ITALY, VOL 2, 2024, 164 : 76 - 83
  • [24] Development of a Novel Compact Robotic Exoskeleton Glove With Reinforcement Learning Control
    Xu, Wenda
    Guo, Yunfei
    Liu, Yujiong
    Ben-Tzvi, Pinhas
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2024, 16 (08):
  • [25] Impedance Control and Performance Measure of Series Elastic Actuators
    Zhao, Ye
    Paine, Nicholas
    Jorgensen, Steven Jens
    Sentis, Luis
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) : 2817 - 2827
  • [26] Series elastic actuators for high fidelity force control
    Pratt, J
    Krupp, B
    Morse, C
    INDUSTRIAL ROBOT, 2002, 29 (03): : 234 - 241
  • [27] Passivity constraints for the impedance control of series elastic actuators
    Tagliamonte, Nevio Luigi
    Accoto, Dino
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2014, 228 (03) : 138 - 153
  • [28] Active Motion Control of a Knee Exoskeleton Driven by Antagonistic Pneumatic Muscle Actuators
    Zhao, Wei
    Song, Aiguo
    ACTUATORS, 2020, 9 (04) : 1 - 14
  • [29] Compliant Control and Compensation for A Compact Cable-Driven Robotic Manipulator
    Li, Jing
    Lam, James
    Liu, Ming
    Wang, Zheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04): : 5417 - 5424
  • [30] Control of a Rehabilitation Robotic Device Driven by Antagonistic Soft Actuators
    Chi, Haozhen
    Su, Hairong
    Liang, Wenyu
    Ren, Qinyuan
    ACTUATORS, 2021, 10 (06)