Surrogate Model Development for Naturally Ventilated Office Buildings
被引:1
作者:
Olinger, Marcelo Salles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Florianopolis, SC, BrazilUniv Fed Santa Catarina, Florianopolis, SC, Brazil
Olinger, Marcelo Salles
[1
]
Melo, Ana Paula
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Florianopolis, SC, BrazilUniv Fed Santa Catarina, Florianopolis, SC, Brazil
Melo, Ana Paula
[1
]
Neves, Leticia Oliveira
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Campinas, BrazilUniv Fed Santa Catarina, Florianopolis, SC, Brazil
Neves, Leticia Oliveira
[2
]
Lamberts, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Santa Catarina, Florianopolis, SC, BrazilUniv Fed Santa Catarina, Florianopolis, SC, Brazil
Lamberts, Roberto
[1
]
机构:
[1] Univ Fed Santa Catarina, Florianopolis, SC, Brazil
[2] Univ Estadual Campinas, Campinas, Brazil
来源:
PROCEEDINGS OF BUILDING SIMULATION 2019: 16TH CONFERENCE OF IBPSA
|
2020年
关键词:
PERFORMANCE;
DESIGN;
HOT;
D O I:
10.26868/25222708.2019.210542
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
Building energy simulation tools are very helpful to achieve thermal performance for buildings. However, modeling can require much detail, specially related to input data. The use of machine learning to develop surrogate models can support architects and builders to get useful information on buildings thermal performance, in a fast and simple way. The aim of this study is to present a machine learning methodology to develop a surrogate model for naturally ventilated office buildings, using artificial neural networks. The output of the surrogate model is the Exceedance Hour Fraction (EHF), a thermal comfort indicator. The final surrogate model has 12 input parameters that can estimate thermal comfort for offices with a wide range of characteristics. The mean absolute error measured for the surrogate model was 0,04.
机构:
Kyung Hee Univ, Dept Architectural Engn, Yongin, South KoreaKyung Hee Univ, Dept Architectural Engn, Yongin, South Korea
Quang, Tran Van
Doan, Dat Tien
论文数: 0引用数: 0
h-index: 0
机构:
Auckland Univ Technol, Sch Future Environm, Dept Built Environm Engn, Auckland 1010, New ZealandKyung Hee Univ, Dept Architectural Engn, Yongin, South Korea
Doan, Dat Tien
Phuong, Nguyen Lu
论文数: 0引用数: 0
h-index: 0
机构:
Ho Chi Minh City Univ Nat Resources & Environm, Fac Environm, Ho Chi Minh City, VietnamKyung Hee Univ, Dept Architectural Engn, Yongin, South Korea
Phuong, Nguyen Lu
Zhang, Tongrui
论文数: 0引用数: 0
h-index: 0
机构:
SIASUN Robot & Automat Ltd, Shenyang, Peoples R China
Liaoning Tech Univ, Sch Civil Engn, Fuxin, Peoples R ChinaKyung Hee Univ, Dept Architectural Engn, Yongin, South Korea
Zhang, Tongrui
Ghaffarianhoseini, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Auckland Univ Technol, Sch Future Environm, Dept Built Environm Engn, Auckland 1010, New ZealandKyung Hee Univ, Dept Architectural Engn, Yongin, South Korea
机构:
Univ Tokyo, Inst Ind Sci, Dept Human & Social Syst, Tokyo 1538505, JapanMalaviya Natl Inst Technol, Ctr Energy & Environm, Jaipur 302017, Rajasthan, India
Singh, Manoj Kumar
Loftness, Vivian
论文数: 0引用数: 0
h-index: 0
机构:
Carnegie Mellon Univ, Sch Architecture, Pittsburgh, PA 15213 USAMalaviya Natl Inst Technol, Ctr Energy & Environm, Jaipur 302017, Rajasthan, India
机构:
Govt West Bengal, Land & Land Reforms & Refugee Relief & Rehabil D, Kolkata, India
Salesian Coll, Dept Environm Studies, Darjeeling, IndiaGovt West Bengal, Land & Land Reforms & Refugee Relief & Rehabil D, Kolkata, India