A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good training practices investigated by simulations.

被引:13
作者
Barbieri, Marco [1 ,2 ]
Brizi, Leonardo [1 ,3 ]
Giampieri, Enrico [4 ]
Solera, Francesco [5 ]
Manners, David Neil [6 ]
Castellani, Gastone [4 ]
Testa, Claudia [1 ,3 ,6 ]
Remondini, Daniel [1 ,3 ]
机构
[1] Univ Bologna, Dept Phys & Astron Augusto Righi, Bologna, Italy
[2] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[3] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy
[4] Univ Bologna, Dept Expt Diagnost & Specialty Med, Bologna, Italy
[5] Deep Vis Consulting, Modena, Italy
[6] IRCCS, Funct & Mol Neuroimaging Unit, Ist Sci Neurol Bologna, Bologna, Italy
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2021年 / 89卷
关键词
MR fingerprinting; Deep learning; qMRI; Parameter mapping; RECONSTRUCTION; BIAS; MRI;
D O I
10.1016/j.ejmp.2021.07.013
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MR fingerprinting (MRF) is an innovative approach to quantitative MRI. A typical disadvantage of dictionary based MRF is the explosive growth of the dictionary as a function of the number of reconstructed parameters, an instance of the curse of dimensionality, which determines an explosion of resource requirements. In this work, we describe a deep learning approach for MRF parameter map reconstruction using a fully connected architecture. Employing simulations, we have investigated how the performance of the Neural Networks (NN) approach scales with the number of parameters to be retrieved, compared to the standard dictionary approach. We have also studied optimal training procedures by comparing different strategies for noise addition and parameter space sampling, to achieve better accuracy and robustness to noise. Four MRF sequences were considered: IR-FISP, bSSFP, IR-FISP-B1, and IR-bSSFP-B1. A comparison between NN and the dictionary approaches in reconstructing parameter maps as a function of the number of parameters to be retrieved was performed using a numerical brain phantom. Results demonstrated that training with random sampling and different levels of noise variance yielded the best performance. NN performance was at least as good as the dictionary-based approach in reconstructing parameter maps using Gaussian noise as a source of artifacts: the difference in performance increased with the number of estimated parameters because the dictionary method suffers from the coarse resolution of the parameter space sampling. The NN proved to be more efficient in memory usage and computational burden, and has great potential for solving large-scale MRF problems.
引用
收藏
页码:80 / 92
页数:13
相关论文
共 51 条
  • [31] The application of magnetic resonance fingerprinting to single voxel proton spectroscopy
    Kulpanovich, Alexey
    Tal, Assaf
    [J]. NMR IN BIOMEDICINE, 2018, 31 (11)
  • [32] Multi-parametric neuroimaging reproducibility: A 3-T resource study
    Landman, Bennett A.
    Huang, Alan J.
    Gifford, Aliya
    Vikram, Deepti S.
    Lim, Issel Anne L.
    Farrell, Jonathan A. D.
    Bogovic, John A.
    Hua, Jun
    Chen, Min
    Jarso, Samson
    Smith, Seth A.
    Joel, Suresh
    Mori, Susumu
    Pekar, James J.
    Barker, Peter B.
    Prince, Jerry L.
    van Zijl, Peter C. M.
    [J]. NEUROIMAGE, 2011, 54 (04) : 2854 - 2866
  • [33] MR Vascular Fingerprinting in Stroke and Brain Tumors Models
    Lemasson, B.
    Pannetier, N.
    Coquery, N.
    Boisserand, Ligia S. B.
    Collomb, Nora
    Schuff, N.
    Moseley, M.
    Zaharchuk, G.
    Barbier, E. L.
    Christen, T.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [34] A CONCORDANCE CORRELATION-COEFFICIENT TO EVALUATE REPRODUCIBILITY
    LIN, LI
    [J]. BIOMETRICS, 1989, 45 (01) : 255 - 268
  • [35] Smart sampling and incremental function learning for very large high dimensional data
    Loyola, Diego G. R.
    Pedergnana, Mattia
    Garcia, Sebastian Gimeno
    [J]. NEURAL NETWORKS, 2016, 78 : 75 - 87
  • [36] Slice Profile and B1 Corrections in 2D Magnetic Resonance Fingerprinting
    Ma, Dan
    Coppo, Simone
    Chen, Yong
    McGivney, Debra F.
    Jiang, Yun
    Pahwa, Shivani
    Gulani, Vikas
    Griswold, Mark A.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (05) : 1781 - 1789
  • [37] Magnetic resonance fingerprinting
    Ma, Dan
    Gulani, Vikas
    Seiberlich, Nicole
    Liu, Kecheng
    Sunshine, Jeffrey L.
    Duerk, Jeffrey L.
    Griswold, Mark A.
    [J]. NATURE, 2013, 495 (7440) : 187 - 192
  • [38] Mazor G, 2017, ARXIV170107668
  • [39] SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain
    McGivney, Debra F.
    Pierre, Eric
    Ma, Dan
    Jiang, Yun
    Saybasili, Haris
    Gulani, Vikas
    Griswold, Mark A.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) : 2311 - 2322
  • [40] Oksuz I, 2019, I S BIOMED IMAGING, P1537, DOI [10.1109/ISBI.2019.8759502, 10.1109/isbi.2019.8759502]