Brassinosteroid Supplementation Alleviates Chromium Toxicity in Soybean (Glycine max L.) via Reducing Its Translocation

被引:15
|
作者
Basit, Farwa [1 ]
Bhat, Javaid Akhter [2 ]
Hu, Jin [1 ]
Kaushik, Prashant [3 ]
Ahmad, Ajaz [4 ]
Guan, Yajing [1 ]
Ahmad, Parvaiz [5 ]
机构
[1] Zhejiang Univ, Adv Seed Inst, Coll Agr & Biotechnol, Hangzhou 310058, Peoples R China
[2] Jiangsu Univ, Int Genome Ctr, Zhenjiang 212013, Peoples R China
[3] Univ Politecn Valencia, Inst Conservac Mejora Agrodiversidad Valenciana, Valencia 46022, Spain
[4] King Saud Univ, Coll Pharm, Dept Clin Pharm, Riyadh 11451, Saudi Arabia
[5] GDC Pulwama, Dept Bot, Srinagar 192301, Jammu And Kashm, India
来源
PLANTS-BASEL | 2022年 / 11卷 / 17期
基金
海南省自然科学基金;
关键词
foliar spray; stress tolerance; oxidative damages; soybean; metal uptake; CR-TOLERANT; STRESS; CADMIUM; ACID; METABOLISM; EXPRESSION; GROWTH; CHLOROPLASTS; GLUTATHIONE; CULTIVARS;
D O I
10.3390/plants11172292
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Plant Regeneration From Soybean (Glycine max L.) Protoplasts via Somatic Embryogenesis
    张贤泽
    T.Komatsuada
    Science in China,SerB, 1993, Ser.B1993 (12) : 1476 - 1482
  • [22] Seed Longevity and Its Association with Agronomic Traits in Soybean [ Glycine max (L.) Merrill]
    Singh, Shreya
    Kanwar, Rajesh
    Kapila, R. K.
    Dhiman, K. C.
    LEGUME RESEARCH, 2024, 47 (07) : 1185 - 1190
  • [23] Pollination of soybean (Glycine max L. Merril) by honeybees (Apis mellifera L.)
    Chiari, WC
    de Toledo, VDA
    Ruvolo-Takasusuki, MCC
    de Oliveira, AJB
    Sakaguti, ES
    Attencia, VM
    Costa, FM
    Mitsui, MH
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2005, 48 (01) : 31 - 36
  • [24] Biochemical Characterization of Esterase from Soybean (Glycine max L.)
    de Barros, Marcio
    Macedo, Gabriela Alves
    FOOD SCIENCE AND BIOTECHNOLOGY, 2011, 20 (05) : 1195 - 1201
  • [25] Priming Fresh and Aged Seed of Soybean (Glycine max L.)
    Miladinov, Z.
    Maksimovic, I
    Tubic, S. Balesevic
    Canak, P.
    Miladinovic, J.
    Djukic, V
    Randjelovic, P.
    LEGUME RESEARCH, 2021, 44 (04) : 452 - 457
  • [26] Recombination hotspots in soybean [Glycine max (L.) Merr.]
    McConaughy, Samantha
    Amundsen, Keenan
    Song, Qijian
    Pantalone, Vince
    Hyten, David
    G3-GENES GENOMES GENETICS, 2023, 13 (06):
  • [27] Identification of QTLs for branching in soybean (Glycine max (L.) Merrill)
    Sangrea Shim
    Moon Young Kim
    Jungmin Ha
    Yeong-Ho Lee
    Suk-Ha Lee
    Euphytica, 2017, 213
  • [28] Identification of QTLs for branching in soybean (Glycine max (L.) Merrill)
    Shim, Sangrea
    Kim, Moon Young
    Ha, Jungmin
    Lee, Yeong-Ho
    Lee, Suk-Ha
    EUPHYTICA, 2017, 213 (09)
  • [29] Viruses infecting soybean (Glycine max L. Merill) in Nigeria
    Time, I.
    Atiri, G. I.
    Kumar, P. Lava
    PHYTOPATHOLOGY, 2010, 100 (06) : S126 - S126
  • [30] Biochemical characterization of esterase from soybean (Glycine max L.)
    Márcio de Barros
    Gabriela Alves Macedo
    Food Science and Biotechnology, 2011, 20 : 1195 - 1201