Contour analysis using time-varying autoregressive model

被引:1
|
作者
Eom, KB [1 ]
机构
[1] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
关键词
D O I
10.1109/ICIP.2000.899857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, contour modeling by a time-varying autoregressive (TVAR) model is considered. A least squares estimator of the TVAR model parameters is presented, and the maximum likelihood approach for determining the model order is also presented. In the experiment, curvature extrema points of synthesized contours are detected from time-frequency distribution estimated with TVAR model. In the classification experiment with contours of various planar shapes, about 97% of samples are correctly classified.
引用
收藏
页码:891 / 894
页数:4
相关论文
共 50 条
  • [1] Speech disorder analysis using time-varying autoregressive
    Arifianto, D
    Setijono, H
    Sekartedjo
    2004 47TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, CONFERENCE PROCEEDINGS, 2004, : 191 - 194
  • [2] Modal parameter identification of time-varying systems using the time-varying multivariate autoregressive model
    Liu, Lilan
    Liu, Hongzhao
    Wu, Ziying
    Yuan, Daning
    Li, Pengfei
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A-C, 2005, : 1817 - 1822
  • [3] Target Tracking Using a Time-Varying Autoregressive Dynamic Model
    Mcdougall, Ralph J.
    Godsill, Simon J.
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2025, 6 : 147 - 155
  • [4] The time-varying Multivariate Autoregressive Index model
    Cubadda, Gianluca
    Grassi, Stefano
    Guardabascio, Barbara
    INTERNATIONAL JOURNAL OF FORECASTING, 2025, 41 (01) : 175 - 190
  • [5] Time-varying autoregressive conditional duration model
    Bortoluzzo, Adriana B.
    Morettin, Pedro A.
    Toloi, Clelia M. C.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (05) : 847 - 864
  • [6] Speech reverberation suppression for time-varying environments using weighted prediction error method with time-varying autoregressive model
    Parchami, Mandi
    Amindavar, Hamidreza
    Zhu, Wei-Ping
    SPEECH COMMUNICATION, 2019, 109 : 1 - 14
  • [7] A Time-Varying Autoregressive Model for Characterizing Nonstationary Processes
    de Souza, Douglas Baptista
    Kuhn, Eduardo Vinicius
    Seara, Rui
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (01) : 134 - 138
  • [8] An autoregressive model with time-varying coefficients for wind fields
    Ailliot, P
    Monbet, V
    Prevosto, M
    ENVIRONMETRICS, 2006, 17 (02) : 107 - 117
  • [9] A Markov Switching Autoregressive Model with Time-Varying Parameters
    Inayati, Syarifah
    Iriawan, Nur
    Irhamah
    FORECASTING, 2024, 6 (03): : 568 - 590
  • [10] A time-varying autoregressive model for groundwater depth prediction
    Guo, Tianli
    Song, Songbai
    Yan, Yating
    JOURNAL OF HYDROLOGY, 2022, 613