Fredholm theory and transversality for the parametrized and for the S1-invariant symplectic action

被引:20
作者
Bourgeois, Frederic [1 ]
Oancea, Alexandru [2 ,3 ]
机构
[1] Univ Libre Bruxelles, Dept Math CP 218, B-1050 Brussels, Belgium
[2] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, F-67000 Strasbourg, France
[3] CNRS, F-67000 Strasbourg, France
关键词
FLOER HOMOLOGY; MASLOV INDEX; MORSE-THEORY; CONTACT; SYSTEMS;
D O I
10.4171/JEMS/227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the parametrized Hamiltonian action functional for finite-dimensional families of Hamiltonians. We show that the linearized operator for the L-2-gradient lines is Fredholm and surjective, for a generic choice of Hamiltonian and almost complex structure. We also establish the Fredholm property and transversality for generic S-1-invariant families of Hamiltonians and almost complex structures, parametrized by odd-dimensional spheres. This is a foundational result used to define S-1-equivariant Floer homology. As an intermediate result of independent interest, we generalize Aronszajn's unique continuation theorem to a class of elliptic integro-differential inequalities of order two.
引用
收藏
页码:1181 / 1229
页数:49
相关论文
共 19 条
  • [1] Aronszajn N., 1957, J. Math. Pures Appl., V36, P235
  • [2] An exact sequence for contact- and symplectic homology
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. INVENTIONES MATHEMATICAE, 2009, 175 (03) : 611 - 680
  • [3] SYMPLECTIC HOMOLOGY, AUTONOMOUS HAMILTONIANS, AND MORSE-BOTT MODULI SPACES
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. DUKE MATHEMATICAL JOURNAL, 2009, 146 (01) : 71 - 174
  • [4] Brezis H., 1983, Analyse fonctionnelle, Theorie et applications
  • [5] Carleman T, 1933, CR HEBD ACAD SCI, V197, P471
  • [6] A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS
    Cieliebak, Kai
    Frauenfelder, Urs Adrian
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (02) : 251 - 316
  • [7] TRANSVERSALITY IN ELLIPTIC MORSE-THEORY FOR THE SYMPLECTIC ACTION
    FLOER, A
    HOFER, H
    SALAMON, D
    [J]. DUKE MATHEMATICAL JOURNAL, 1995, 80 (01) : 251 - 292
  • [8] Givental A. B., 1995, SELECTA MATH, V1, P325, DOI [10.1007/ BF01671568, DOI 10.1007/BF01671568]
  • [9] Floer homology of families I
    Hutchings, Michael
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (01): : 435 - 492
  • [10] McDuff D, 2004, J-holomorphic curves and symplectic topology, V52