Genome-wide identification of multifunctional laccase gene family in Eucalyptus grandis: potential targets for lignin engineering and stress tolerance

被引:26
|
作者
Arcuri, Mariana L. C. [1 ]
Fialho, Larissa C. [1 ]
Nunes-Laitz, Alessandra Vasconcellos [1 ,4 ]
Fuchs-Ferraz, Maria Cecilia P. [1 ]
Wolf, Ivan Rodrigo [2 ]
Valente, Guilherme Targino [2 ]
Marino, Celso L. [1 ,3 ]
Maia, Ivan G. [1 ]
机构
[1] UNESP, Inst Biosci Botucatu, Dept Genet, BR-18618689 Botucatu, SP, Brazil
[2] UNESP, FCA, Dept Biotechnol & Bioproc Engn, Botucatu, SP, Brazil
[3] UNESP, Inst Biotechnol IBTEC, Botucatu, SP, Brazil
[4] Inst Fed Educ Ciencia & Tecnol Rondonia, Campus Colorado do Oeste, Colorado Do Oeste, Brazil
来源
TREES-STRUCTURE AND FUNCTION | 2020年 / 34卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Laccase; Gene structure; Gene expression; Lignification; Abiotic stress; Eucalyptus; LIGNIFICATION; EXPRESSION; ARABIDOPSIS; SUGARCANE; SELECTION; PATHWAY; PCR;
D O I
10.1007/s00468-020-01954-3
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Key message A survey of theEucalyptus grandis genome revealed the presence of 54 laccase genes. Their tissue-specific and stress-induced expression patterns suggest a role in lignification and adaptation to abiotic stresses. Laccases are multicopper oxidases that play important roles in the oxidation of monolignols during lignin biosynthesis and are reported to be functionally involved in plant development and stress responses. In this study, a genome-wide survey of the Eucalyptus grandis genome revealed the presence of 54 putative LAC genes (referred as EgrLAC), which were assigned to six different phylogenetic groups. Among them, 17 were predicted to be potential targets of miR397, a negative regulator of lignin biosynthesis. Based on different RNA-Seq datasets, distinct organ/tissue expression patterns of the identified EgrLAC genes were ascertained. The vast majority, however, showed enriched expression in the vascular tissues of roots and stems. Additional expression profiling of selected EgrLAC genes revealed differential expression in response to oxidative and osmotic stresses, suggesting a role in abiotic stress responses. Parallel promoter analysis of EgrLAC4, a close homologue to the Arabidopsis lignin biosynthesis-related gene AtLAC17, revealed a vascular expression pattern, mostly associated with the phloem. Overall, our data point to an involvement of the identified EgrLAC genes in lignification and in Eucalyptus adaptation to abiotic stresses.
引用
收藏
页码:745 / 758
页数:14
相关论文
共 50 条
  • [21] Genome-wide identification of laccase gene family in three Phytophthora species
    Feng, Baozhen
    Li, Peiqian
    GENETICA, 2012, 140 (10-12) : 477 - 484
  • [22] Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans
    Xu, Wei
    Chen, Zexi
    Ahmed, Naeem
    Han, Bing
    Cui, Qinghua
    Liu, Aizhong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (07)
  • [23] Genome-Wide Identification and Characterization of bHLH Gene Family in Hevea brasiliensis
    Wang, Zheng
    Yuan, Yuan
    Rehman, Fazal
    Wang, Xin
    Wu, Tingkai
    Deng, Zhi
    Cheng, Han
    FORESTS, 2024, 15 (11):
  • [24] Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)
    Ding, Anming
    Marowa, Prince
    Kong, Yingzhen
    MOLECULAR GENETICS AND GENOMICS, 2016, 291 (05) : 1891 - 1907
  • [25] Genome-Wide Identification and Analysis of the WNK Kinase Gene Family in Upland Cotton
    Zhang, Qi
    Zhang, Caidie
    Pan, Zhenyuan
    Lin, Hairong
    Li, Zhibo
    Hou, Xinhe
    Liu, Jinshan
    Nie, Xinhui
    Wu, Yuanlong
    PLANTS-BASEL, 2023, 12 (23):
  • [26] Genome-Wide Identification, Expression Analysis, and Transcriptome Analysis of the NPF Gene Family under Various Nitrogen Conditions in Eucalyptus grandis
    Li, Guangyou
    Yang, Deming
    Hu, Yang
    Xu, Jianmin
    Li, Juan
    Lu, Zhaohua
    FORESTS, 2024, 15 (10):
  • [27] Genome-wide analysis of PHD finger gene family and identification of potential miRNA and their PHD finger gene specific targets in Oryza sativa indica
    Waziri, Aafrin
    Singh, Deepak Kumar
    Sharma, Tarun
    Chatterjee, Sayan
    Purty, Ram Singh
    NON-CODING RNA RESEARCH, 2020, 5 (04): : 191 - 200
  • [28] Genome-wide identification and expression analysis of the ASMT gene family reveals their role in abiotic stress tolerance in apple
    Wang, Hongtao
    Song, Chunhui
    Fang, Sen
    Wang, Zhengyang
    Song, Shangwei
    Jiao, Jian
    Wang, Miaomiao
    Zheng, Xianbo
    Bai, Tuanhui
    SCIENTIA HORTICULTURAE, 2022, 293
  • [29] Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis
    Yu, Hong
    Soler, Marcal
    Mila, Isabelle
    Clemente, Helene San
    Savelli, Bruno
    Dunand, Christophe
    Paiva, Jorge A. P.
    Myburg, Alexander A.
    Bouzayen, Mondher
    Grima-Pettenati, Jacqueline
    Cassan-Wang, Hua
    PLOS ONE, 2014, 9 (09):
  • [30] Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress
    Zhang, Jiashuo
    Wu, Jinzhang
    Guo, Mingliang
    Aslam, Mohammad
    Wang, Qi
    Ma, Huayan
    Li, Shubin
    Zhang, Xingtan
    Cao, Shijiang
    BMC PLANT BIOLOGY, 2020, 20 (01)