Reliable Postprocessing Improvement of van der Waals Heterostructures

被引:51
|
作者
Kim, Youngwook [1 ,2 ]
Herlinger, Patrick [1 ]
Taniguchi, Takashi [3 ]
Watanabe, Kenji [3 ]
Smet, Jurgen H. [1 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] DGIST, Dept Emerging Mat Sci, Daegu 42988, South Korea
[3] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
van der Waals heterostructure; graphene; molybdenum disulfide; quantum Hall effect; Hall sensor; QUANTUM HALL STATES; BORON-NITRIDE; GRAPHENE; TRANSITION;
D O I
10.1021/acsnano.9b06992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The successful assembly of heterostructures consisting of several layers of different 2D materials in arbitrary order by exploiting van der Waals forces has truly been a game changer in the field of low-dimensional physics. For instance, the encapsulation of graphene or MoS2 between atomically flat hexagonal boron nitride (hBN) layers with strong affinity and graphitic gates that screen charge impurity disorder provided access to a plethora of interesting physical phenomena by drastically boosting the device quality. The encapsulation is accompanied by a self-cleansing effect at the interfaces. The otherwise predominant charged impurity disorder is minimized, and random strain fluctuations ultimately constitute the main source of residual disorder. Despite these advances, the fabricated heterostructures still vary notably in their performance. Although some achieve record mobilities, others only possess mediocre quality. Here, we report a reliable method to improve fully completed van der Waals heterostructure devices with a straightforward postprocessing surface treatment based on thermal annealing and contact mode atomic force microscopy (AFM). The impact is demonstrated by comparing magnetotransport measurements before and after the AFM treatment on one and the same device as well as on a larger set of treated and untreated devices to collect device statistics. Both the low-temperature properties and the room temperature electrical characteristics, as relevant for applications, improve on average substantially. We surmise that the main beneficial effect arises from reducing nanometer scale corrugations at the interfaces, that is, the detrimental impact of random strain fluctuations.
引用
收藏
页码:14182 / 14190
页数:9
相关论文
共 50 条
  • [41] Terahertz phonon engineering with van der Waals heterostructures
    Yoon, Yoseob
    Lu, Zheyu
    Uzundal, Can
    Qi, Ruishi
    Zhao, Wenyu
    Chen, Sudi
    Feng, Qixin
    Kim, Woochang
    Naik, Mit H.
    Watanabe, Kenji
    Taniguchi, Takashi
    Louie, Steven G.
    Crommie, Michael F.
    Wang, Feng
    NATURE, 2024, 631 (8022) : 771 - 776
  • [42] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)
  • [43] Modulating Charge Separation with Hexagonal Boron Nitride Mediation in Vertical Van der Waals Heterostructures
    Inbaraj, Christy Roshini Paul
    Mathew, Roshan Jesus
    Ulaganathan, Rajesh Kumar
    Sankar, Raman
    Kataria, Monika
    Lin, Hsia Yu
    Cheng, Hao-Yu
    Lin, Kung-Hsuan
    Lin, Hung-, I
    Liao, Yu-Ming
    Chou, Fang Cheng
    Chen, Yit-Tsong
    Lee, Chih-Hao
    Chen, Yang-Fang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (23) : 26213 - 26221
  • [44] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    Journal of Semiconductors, 2017, (03) : 48 - 56
  • [45] Moire engineering in van der Waals heterostructures
    Rakib, Tawfiqur
    Pochet, Pascal
    Ertekin, Elif
    Johnson, Harley T.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (12)
  • [46] Coherent acoustic phonons in van der Waals nanolayers and heterostructures
    Greener, J. D. G.
    Akimov, A., V
    Gusev, V. E.
    Kudrynskyi, Z. R.
    Beton, P. H.
    Kovalyuk, Z. D.
    Taniguchi, T.
    Watanabe, K.
    Kent, A. J.
    Patane, A.
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [47] Gapless van der Waals Heterostructures for Infrared Optoelectronic Devices
    Wen, Yao
    He, Peng
    Wang, Qisheng
    Yao, Yuyu
    Zhang, Yu
    Hussain, Sabir
    Wang, Zhenxing
    Cheng, Ruiqing
    Yin, Lei
    Sendeku, Marshet Getaye
    Wang, Feng
    Jiang, Chao
    He, Jun
    ACS NANO, 2019, 13 (12) : 14519 - 14528
  • [48] Interfacial Stress Transfer and Fracture in van der Waals Heterostructures
    Li, Zheling
    Liu, Mufeng
    Kumar, Pankaj
    Chang, Zhenghua
    Qi, Guocheng
    He, Pei
    Wei, Yujie
    Young, Robert J.
    Novoselov, Kostya S.
    ADVANCED MATERIALS, 2024, 36 (47)
  • [49] Charge Sampling Photodetector Based on van der Waals Heterostructures
    Zhou, Jiachao
    Li, Lingfei
    Qadir, Akeel
    Li, Hanxi
    Lv, Jianhang
    Shehzad, Khurram
    Xu, Xinyi
    Liu, Lixiang
    Tian, Feng
    Liu, Wei
    Chen, Li
    Yu, Li
    Su, Xin
    Bodepudi, Srikrishna Chanakya
    Hu, Huan
    Zhao, Yuda
    Yu, Bin
    Wang, Xiaomu
    Xu, Yang
    ADVANCED OPTICAL MATERIALS, 2022, 10 (24):
  • [50] Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures
    Tao, Quanyang
    Wu, Ruixia
    Li, Qianyuan
    Kong, Lingan
    Chen, Yang
    Jiang, Jiayang
    Lu, Zheyi
    Li, Bailing
    Li, Wanying
    Li, Zhiwei
    Liu, Liting
    Duan, Xidong
    Liao, Lei
    Liu, Yuan
    NATURE COMMUNICATIONS, 2021, 12 (01)