Reliable Postprocessing Improvement of van der Waals Heterostructures

被引:51
|
作者
Kim, Youngwook [1 ,2 ]
Herlinger, Patrick [1 ]
Taniguchi, Takashi [3 ]
Watanabe, Kenji [3 ]
Smet, Jurgen H. [1 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] DGIST, Dept Emerging Mat Sci, Daegu 42988, South Korea
[3] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
van der Waals heterostructure; graphene; molybdenum disulfide; quantum Hall effect; Hall sensor; QUANTUM HALL STATES; BORON-NITRIDE; GRAPHENE; TRANSITION;
D O I
10.1021/acsnano.9b06992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The successful assembly of heterostructures consisting of several layers of different 2D materials in arbitrary order by exploiting van der Waals forces has truly been a game changer in the field of low-dimensional physics. For instance, the encapsulation of graphene or MoS2 between atomically flat hexagonal boron nitride (hBN) layers with strong affinity and graphitic gates that screen charge impurity disorder provided access to a plethora of interesting physical phenomena by drastically boosting the device quality. The encapsulation is accompanied by a self-cleansing effect at the interfaces. The otherwise predominant charged impurity disorder is minimized, and random strain fluctuations ultimately constitute the main source of residual disorder. Despite these advances, the fabricated heterostructures still vary notably in their performance. Although some achieve record mobilities, others only possess mediocre quality. Here, we report a reliable method to improve fully completed van der Waals heterostructure devices with a straightforward postprocessing surface treatment based on thermal annealing and contact mode atomic force microscopy (AFM). The impact is demonstrated by comparing magnetotransport measurements before and after the AFM treatment on one and the same device as well as on a larger set of treated and untreated devices to collect device statistics. Both the low-temperature properties and the room temperature electrical characteristics, as relevant for applications, improve on average substantially. We surmise that the main beneficial effect arises from reducing nanometer scale corrugations at the interfaces, that is, the detrimental impact of random strain fluctuations.
引用
收藏
页码:14182 / 14190
页数:9
相关论文
共 50 条
  • [1] Procedure for Fabrication and Characterization of van der Waals Heterostructures
    Shevchun, A. F.
    Prokudina, M. G.
    Egorov, S. V.
    Tikhonov, E. S.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (03): : 706 - 711
  • [2] Electron quantum metamaterials in van der Waals heterostructures
    Song, Justin C. W.
    Gabor, Nathaniel M.
    NATURE NANOTECHNOLOGY, 2018, 13 (11) : 986 - 993
  • [3] Photoresponse of Natural van der Waals Heterostructures
    Ray, Kyle
    Yore, Alexander E.
    Mou, Tong
    Jha, Sauraj
    Smithe, Kirby K. H.
    Wang, Bin
    Pop, Eric
    Newaz, A. K. M.
    ACS NANO, 2017, 11 (06) : 6024 - 6030
  • [4] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [5] Twistronics and moiré excitonic physics in van der Waals heterostructures
    Li, Siwei
    Wei, Ke
    Liu, Qirui
    Tang, Yuxiang
    Jiang, Tian
    FRONTIERS OF PHYSICS, 2024, 19 (04)
  • [6] Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides
    Azizi, Amin
    Eichfeld, Sarah
    Geschwind, Gayle
    Zhang, Kehao
    Jiang, Bin
    Mukherjee, Debangshu
    Hossain, Lorraine
    Piasecki, Aleksander F.
    Kabius, Bernd
    Robinson, Joshua A.
    Alem, Nasim
    ACS NANO, 2015, 9 (05) : 4882 - 4890
  • [7] Exploring the Stability of Twisted van der Waals Heterostructures
    Silva, Andrea
    Claerbout, Victor E. P.
    Polcar, Tomas
    Kramer, Denis
    Nicolini, Paolo
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45214 - 45221
  • [8] Synthetic Nanosheets of Natural van der Waals Heterostructures
    Banik, Ananya
    Biswas, Kanishka
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (46) : 14561 - 14566
  • [9] Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures
    Cheng, Tiantian
    Meng, Yuxin
    Luo, Man
    Xian, Jiachi
    Luo, Wenjin
    Wang, Weijun
    Yue, Fangyu
    Ho, Johnny C.
    Yu, Chenhui
    Chu, Junhao
    SMALL, 2024, 20 (48)
  • [10] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480