Estimation Error Bound of Battery Electrode Parameters With Limited Data Window

被引:25
|
作者
Lee, Suhak [1 ]
Mohtat, Peyman [1 ]
Siegel, Jason B. [1 ]
Stefanopoulou, Anna G. [1 ]
Lee, Jang-Woo [2 ]
Lee, Tae-Kyung [2 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Samsung SDI Co Ltd, Syst Dev Team, Yongin 17084, South Korea
关键词
Estimation error bound; battery electrode parameters; Cramer-Rao bound; confidence interval; data window; MODEL; IDENTIFICATION; STATE;
D O I
10.1109/TII.2019.2952066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced battery management system, which leverages an in-depth understanding of the battery state of health, can improve efficiently and safely. To this end, we introduce the electrode-level battery state of health (eSOH) estimation problem with open-circuit voltage (OCV) data. In real-world applications, collecting the full-range OCV data is difficult since the battery is not deeply discharged. When data is limited, the estimation accuracy deteriorates. In this article, we quantify the uncertainty of the electrode parameter estimation with partial data based on the Cramer-Rao bound and confidence interval. By introducing a voltage constraint in the estimation problem, the positive electrode parameters can be estimated with sufficient accuracy over a wide range of state of charge. However, the estimation accuracy of the negative electrode parameters is more sensitive to the depth of discharge. The proposed framework can be used as a guideline for selecting proper data windows and understanding the impact on parameter estimation.
引用
收藏
页码:3376 / 3386
页数:11
相关论文
共 50 条
  • [31] UAS based Li-ion battery model parameters estimation
    Ali, D.
    Mukhopadhyay, S.
    Rehman, H.
    Khurram, A.
    CONTROL ENGINEERING PRACTICE, 2017, 66 : 126 - 145
  • [32] Adaptive Online Battery Parameters/SOC/Capacity Co-estimation
    Rahimi-Eichi, Habiballah
    Chow, Mo-Yuen
    2013 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2013,
  • [33] A Novel Battery Model Considering the Battery Actual Reaction Mechanism for Model Parameters and SOC Joint Estimation
    Qin, Pengliang
    Zhao, Linhui
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (06) : 5496 - 5507
  • [34] Methodology for Estimation of Dynamic Response of Demand Using Limited Data
    Milanovic, Jovica V.
    Xu, Yizheng
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (03) : 1288 - 1297
  • [35] Data selection framework for battery state of health related parameter estimation under system uncertainties
    Fogelquist, Jackson
    Lin, Xinfan
    ETRANSPORTATION, 2023, 18
  • [36] Weight value ellipsoid based estimation algorithm with finite data window
    Xu, Guixiang
    Liu, Zixing
    Wang, Ziyun
    Ji, Zhicheng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1632 - 1636
  • [37] Parameters Estimation of Hinging Hyperplanes using Median Squared Error Criterion
    Huang, Xiaolin
    Xu, Jun
    Wang, Shuning
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2011, 9 (04) : 627 - 635
  • [38] Error Analysis for Parameter Estimation of Li-ion Battery subject to System Uncertainties
    Fogelquist, Jackson
    Lai, Qingzhi
    Lin, Xinfan
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3099 - 3105
  • [39] Learning from Imprecise Observations: An Estimation Error Bound based on Fuzzy Random Variables
    Ma, Guangzhi
    Liu, Feng
    Zhang, Guangquan
    Lu, Jie
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [40] Comparison study between hybrid Nelder-Mead particle swarm optimization and open circuit voltage-Recursive least square for the battery parameters estimation
    Jarrraya, Imen
    Degaa, Laid
    Rizoug, Nassim
    Chabchoub, Mohamed Hedi
    Trabelsi, Hafedh
    JOURNAL OF ENERGY STORAGE, 2022, 50