Estimation Error Bound of Battery Electrode Parameters With Limited Data Window

被引:25
|
作者
Lee, Suhak [1 ]
Mohtat, Peyman [1 ]
Siegel, Jason B. [1 ]
Stefanopoulou, Anna G. [1 ]
Lee, Jang-Woo [2 ]
Lee, Tae-Kyung [2 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Samsung SDI Co Ltd, Syst Dev Team, Yongin 17084, South Korea
关键词
Estimation error bound; battery electrode parameters; Cramer-Rao bound; confidence interval; data window; MODEL; IDENTIFICATION; STATE;
D O I
10.1109/TII.2019.2952066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced battery management system, which leverages an in-depth understanding of the battery state of health, can improve efficiently and safely. To this end, we introduce the electrode-level battery state of health (eSOH) estimation problem with open-circuit voltage (OCV) data. In real-world applications, collecting the full-range OCV data is difficult since the battery is not deeply discharged. When data is limited, the estimation accuracy deteriorates. In this article, we quantify the uncertainty of the electrode parameter estimation with partial data based on the Cramer-Rao bound and confidence interval. By introducing a voltage constraint in the estimation problem, the positive electrode parameters can be estimated with sufficient accuracy over a wide range of state of charge. However, the estimation accuracy of the negative electrode parameters is more sensitive to the depth of discharge. The proposed framework can be used as a guideline for selecting proper data windows and understanding the impact on parameter estimation.
引用
收藏
页码:3376 / 3386
页数:11
相关论文
共 50 条
  • [21] Data-Driven Design of a Cascaded Observer for Battery State of Health Estimation
    Hametner, Christoph
    Jakubek, Stefan
    Prochazka, Wenzel
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (06) : 6258 - 6266
  • [22] Estimation of Equivalent Circuit Model Parameters for a Generic Battery Using Least-Square Method
    Das, Sourabh
    Samanta, Susovon
    2022 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS, PEDES, 2022,
  • [23] ATMOSPHERIC DENSITY ESTIMATION WITH LIMITED ORBIT TRACKING DATA
    Shan, Jinjun
    Ren, Yuan
    ASTRODYNAMICS 2017, PTS I-IV, 2018, 162 : 3203 - 3221
  • [24] Blind Estimation of Interleaver Parameter With a Limited Number of Data
    Jang, Mingyu
    Kim, Geunbae
    Kim, Yoonji
    Yoon, Dongweon
    IEEE ACCESS, 2020, 8 : 69160 - 69166
  • [25] Synthetic Battery Data Generation and Validation for Capacity Estimation
    Pyne, Moinak
    Yurkovich, Benjamin J.
    Yurkovich, Stephen
    BATTERIES-BASEL, 2023, 9 (10):
  • [26] Overcoming limited battery data challenges: A coupled neural network approach
    Herle, Aniruddh
    Channegowda, Janamejaya
    Prabhu, Dinakar
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (14) : 20474 - 20482
  • [27] Online Estimation and Error Analysis of both SOC and SOH of Lithium-ion Battery based on DEKF Method
    Fang, Linlin
    Li, Junqiu
    Peng, Bo
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 3008 - 3013
  • [28] Historical data demand in window-based battery parameter identification algorithm
    Huai, Ruituo
    Yu, Zhihao
    Li, Hongyu
    JOURNAL OF POWER SOURCES, 2019, 433
  • [29] Lithium-ion battery degradation diagnosis and state-of-health estimation with half cell electrode potential
    Zhu, Chen
    Sun, Liqing
    Chen, Cheng
    Tian, Jinpeng
    Shen, Weixiang
    Xiong, Rui
    ELECTROCHIMICA ACTA, 2023, 459
  • [30] Data-Driven Hybrid Internal Temperature Estimation Approach for Battery Thermal Management
    Liu, Kailong
    Li, Kang
    Peng, Qiao
    Guo, Yuanjun
    Zhang, Li
    COMPLEXITY, 2018,