Estimation Error Bound of Battery Electrode Parameters With Limited Data Window

被引:25
|
作者
Lee, Suhak [1 ]
Mohtat, Peyman [1 ]
Siegel, Jason B. [1 ]
Stefanopoulou, Anna G. [1 ]
Lee, Jang-Woo [2 ]
Lee, Tae-Kyung [2 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Samsung SDI Co Ltd, Syst Dev Team, Yongin 17084, South Korea
关键词
Estimation error bound; battery electrode parameters; Cramer-Rao bound; confidence interval; data window; MODEL; IDENTIFICATION; STATE;
D O I
10.1109/TII.2019.2952066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advanced battery management system, which leverages an in-depth understanding of the battery state of health, can improve efficiently and safely. To this end, we introduce the electrode-level battery state of health (eSOH) estimation problem with open-circuit voltage (OCV) data. In real-world applications, collecting the full-range OCV data is difficult since the battery is not deeply discharged. When data is limited, the estimation accuracy deteriorates. In this article, we quantify the uncertainty of the electrode parameter estimation with partial data based on the Cramer-Rao bound and confidence interval. By introducing a voltage constraint in the estimation problem, the positive electrode parameters can be estimated with sufficient accuracy over a wide range of state of charge. However, the estimation accuracy of the negative electrode parameters is more sensitive to the depth of discharge. The proposed framework can be used as a guideline for selecting proper data windows and understanding the impact on parameter estimation.
引用
收藏
页码:3376 / 3386
页数:11
相关论文
共 50 条
  • [1] A probabilistic forecasting approach towards generation of synthetic battery parameters to resolve limited data challenges
    Naaz, Falak
    Channegowda, Janamejaya
    ENERGY STORAGE, 2022, 4 (04)
  • [2] Analytic Bound on Accuracy of Battery State and Parameter Estimation
    Lin, Xinfan
    Stefanopoulou, Anna G.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1879 - A1891
  • [3] On the Error of Li-ion Battery Parameter Estimation Subject to System Uncertainties
    Fogelquist, Jackson
    Lai, Qingzhi
    Lin, Xinfan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (03)
  • [4] Drying of lithium-ion battery negative electrode coating: Estimation of transport parameters
    Renganathan, Sindhuja
    Khan, Nizay
    Srinivasan, Ramanuja
    DRYING TECHNOLOGY, 2022, 40 (10) : 2188 - 2198
  • [5] Sequential estimation of hydraulic parameters in layered soil using limited data
    Seki, Katsutoshi
    Ackerer, Philippe
    Lehmann, Francois
    GEODERMA, 2015, 247 : 117 - 128
  • [6] A Data Selection Strategy for Real-time Estimation of Battery Parameters
    Lin, Xinfan
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2276 - 2281
  • [7] Data-Driven Ohmic Resistance Estimation of Battery Packs for Electric Vehicles
    Liang, Kaizhi
    Zhang, Zhaosheng
    Liu, Peng
    Wang, Zhenpo
    Jiang, Shangfeng
    ENERGIES, 2019, 12 (24)
  • [8] Frequency sensitivity analysis of battery states and parameters for data-agnostic online estimation
    Xi, Haoda
    Zhang, Shuo
    Lin, Xijian
    Luo, Jiani
    Huang, Sihao
    Xiao, Dianxun
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [9] Real Time Li-Ion Battery Bank Parameters Estimation via Universal Adaptive Stabilization
    Mukhopadhyay, Shayok
    Usman, Hafiz M.
    Rehman, Habibur
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2022, 1 : 268 - 293
  • [10] Tuning of Moving Window Least Squares-based Algorithm for Online Battery Parameter Estimation
    Morello, R.
    Di Rienzo, R.
    Roncella, R.
    Saletti, R.
    Baronti, F.
    2017 14TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD), 2017,