Structural Topology Optimization Based on the Level Set Method Using COMSOL

被引:0
作者
Zhang, Shaohua [1 ,2 ]
Li, Pei [1 ]
Zhong, Yongteng [1 ]
Xiang, Jiawei [1 ]
机构
[1] Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China
[2] Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2014年 / 101卷 / 01期
基金
美国国家科学基金会;
关键词
level set method; topology optimization; COMSOL; finite element; DESIGN; SHAPE; WAVELET;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to obtain smooth boundary and improve computational efficiency, a new topology optimization scheme based on the level set method is presented. Using the level set function as design variable and the Volume ratio of the solid material as volume constraint, respectively, this scheme can easily implement compliance minimization structure topology optimization in associated with the reaction-diffusion equation in commercial software COMSOL. Compared with the results of solid isotropic material with penalization (SIMP) and traditional level set method, this scheme obtained a smooth geometry boundary. In the present computational scheme, the computational cost could be enormously saved without solving the complicated Hamilton-Jacobi equation restricted by Courant-Friedrichs-Lewy (CFL) condition. Two numerical examples verified the performance of the proposed structural topology optimization scheme.
引用
收藏
页码:17 / 31
页数:15
相关论文
共 28 条
[1]   Shape optimization by the homogenization method [J].
Allaire, G ;
Bonnetier, E ;
Francfort, G ;
Jouve, F .
NUMERISCHE MATHEMATIK, 1997, 76 (01) :27-68
[2]  
[Anonymous], 2013, Topology optimization: theory, methods, and applications
[3]  
Bendsoe M., 1997, OPTIMIZATION STRUCTU
[4]  
Bendsoe M. P., 1989, Struct. Optim., V1, P193, DOI [10.1007/BF01650949, DOI 10.1007/BF01650949]
[5]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[6]   Material interpolation schemes in topology optimization [J].
Bendsoe, MP ;
Sigmund, O .
ARCHIVE OF APPLIED MECHANICS, 1999, 69 (9-10) :635-654
[7]   ON PARTIAL DIFFERENCE EQUATIONS OF MATHEMATICAL PHYSICS [J].
COURANT, R ;
FRIEDRICHS, K ;
LEWY, H .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967, 11 (02) :215-+
[8]  
Eschenauer HA., 2001, Appl Mech Rev, V54, P331, DOI [DOI 10.1115/1.1388075, 10.1115/1.1388075]
[9]  
Huang X., 2010, EVOLUTIONARY TOPOLOG, DOI DOI 10.1002/9780470689486
[10]   Evolutionary level set method for structural topology optimization [J].
Jia, Haipeng ;
Beom, H. G. ;
Wang, Yuxin ;
Lin, Song ;
Liu, Bo .
COMPUTERS & STRUCTURES, 2011, 89 (5-6) :445-454