Soliton trap in strained graphene nanoribbons

被引:17
作者
Sasaki, Ken-ichi [1 ]
Saito, Riichiro [2 ]
Dresselhaus, Mildred S. [3 ]
Wakabayashi, Katsunori [1 ,4 ]
Enoki, Toshiaki [5 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] MIT, Dept Phys, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan
[5] Tokyo Inst Technol, Dept Chem, Meguro Ku, Tokyo 1528551, Japan
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
关键词
ELECTRONIC-STRUCTURE; ZIGZAG; SHAPE; STATE; SIZE;
D O I
10.1088/1367-2630/12/10/103015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The wavefunction of a massless fermion consists of two chiralities, left handed and right handed, which are eigenstates of the chiral operator. The theory of weak interactions of elementary particle physics is not symmetric about the two chiralities, and such a symmetry-breaking theory is referred to as a chiral gauge theory. The chiral gauge theory can be applied to the massless Dirac particles of graphene. In this paper, we show within the framework of the chiral gauge theory for graphene that a topological soliton exists near the boundary of a graphene nanoribbon in the presence of a strain. This soliton is a zero-energy state connecting two chiralities and is an elementary excitation transporting a pseudo-spin. The soliton should be observable by means of a scanning tunneling microscopy experiment.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] Bertlmann R.A., 2000, Anomalies in Quantum Field Theory
  • [2] Graphene nano-ribbon electronics
    Chen, Zhihong
    Lin, Yu-Ming
    Rooks, Michael J.
    Avouris, Phaedon
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) : 228 - 232
  • [3] Peculiar localized state at zigzag graphite edge
    Fujita, M
    Wakabayashi, K
    Nakada, K
    Kusakabe, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) : 1920 - 1923
  • [4] Disorder-induced gap behavior in graphene nanoribbons
    Gallagher, Patrick
    Todd, Kathryn
    Goldhaber-Gordon, David
    [J]. PHYSICAL REVIEW B, 2010, 81 (11)
  • [5] Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
    Guinea, F.
    Katsnelson, M. I.
    Geim, A. K.
    [J]. NATURE PHYSICS, 2010, 6 (01) : 30 - 33
  • [6] Electron Transport in Disordered Graphene Nanoribbons
    Han, Melinda Y.
    Brant, Juliana C.
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (05)
  • [7] NEUTRAL SOLITONS IN POLYACETYLENE - IMPLICATIONS OF THE ENDOR RESULTS
    HEEGER, AJ
    SCHRIEFFER, JR
    [J]. SOLID STATE COMMUNICATIONS, 1983, 48 (03) : 207 - 210
  • [8] SOLITONS IN CONDUCTING POLYMERS
    HEEGER, AJ
    KIVELSON, S
    SCHRIEFFER, JR
    SU, WP
    [J]. REVIEWS OF MODERN PHYSICS, 1988, 60 (03) : 781 - 850
  • [9] Chiral gauge theory for graphene
    Jackiw, R.
    Pi, S.-Y.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (26)
  • [10] SOLITONS WITH FERMION NUMBER 1/2
    JACKIW, R
    REBBI, C
    [J]. PHYSICAL REVIEW D, 1976, 13 (12) : 3398 - 3409