Integrable system;
Higgs bundle;
Special Kahler;
GEOMETRY;
D O I:
10.4171/EMSS/46
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We describe the Special Kahler structure on the base of the so-called Hitchin system in terms of the geometry of the space of spectral curves. It yields a simple formula for the Kahler potential. This extends to the case of a singular spectral curve and we show that this defines the Special Kahler structure on certain natural integrable subsystems. Examples include the extreme case where the metric is flat.
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
Rossi, Federico Alberto
Tomassini, Adriano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Matemat, I-43124 Parma, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
机构:
Univ Sci & Technol China, Sch Math, Hefei, Peoples R ChinaUniv Sci & Technol China, Sch Math, Hefei, Peoples R China
Huang, Pengfei
Hwu, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math, Hefei, Peoples R China
Kyoto Univ, Res Inst Math Sci, Kyoto, JapanUniv Sci & Technol China, Sch Math, Hefei, Peoples R China
机构:
Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
Fino, Anna
Tomassini, Adriano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Matemat, I-43100 Parma, ItalyUniv Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy