Unique features of the generation-recombination noise in quasi-one-dimensional van der Waals nanoribbons

被引:33
作者
Geremew, Adane K. [1 ,2 ]
Rumyantsev, Sergey [1 ,2 ,3 ,4 ]
Bloodgood, Matthew A. [5 ]
Salguero, Tina T. [5 ]
Balandin, Alexander A. [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, NDL, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Elect & Comp Engn, Phonon Optimized Engn Mat POEM Ctr, Riverside, CA 92521 USA
[3] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[4] Polish Acad Sci, Inst High Pressure Phys, Ctr Terahertz Res & Applicat CENTERA, PL-01142 Warsaw, Poland
[5] Univ Georgia, Dept Chem, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
1/F NOISE; ELECTRONIC-PROPERTIES; TRANSPORT; GRAPHENE; ELECTROMIGRATION; FLUCTUATIONS; TRANSITION; CRYSTALS; ALUMINUM; SINGLE;
D O I
10.1039/c8nr06984k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe the low-frequency current fluctuations, i.e. electronic noise, in quasi-one-dimensional ZrTe3 van der Waals nanoribbons, which have recently attracted attention owing to their extraordinary high current carrying capacity. Whereas the low-frequency noise spectral density, S-I/I-2, reveals 1/f behavior near room temperature, it is dominated by the Lorentzian bulges of the generation-recombination noise at low temperatures (I is the current and f is the frequency). Unexpectedly, the corner frequency of the observed Lorentzian peaks shows strong sensitivity to the applied source-drain bias. This dependence on electric field can be explained by the Frenkel-Poole effect in the scenario where the voltage drop happens predominantly on the defects, which block the quasi-1D conduction channels. We also have found that the activation energy of the characteristic frequencies of the G-R noise in quasi-1D ZrTe3 is defined primarily by the temperature dependence of the capture cross-section of the defects rather than by their energy position. These results are important for the application of quasi-1D van der Waals materials in ultimately downscaled electronics.
引用
收藏
页码:19749 / 19756
页数:8
相关论文
共 60 条
  • [51] Sto K., 1998, J. Solid State Chem, V168, P160
  • [52] Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: prospects of interconnect applications
    Stolyarov, Maxim A.
    Liu, Guanxiong
    Bloodgood, Matthew A.
    Aytan, Ece
    Jiang, Chenglong
    Samnakay, Rameez
    Salguero, Tina T.
    Nika, Denis L.
    Rumyantsev, Sergey L.
    Shur, Michael S.
    Bozhilov, Krassimir N.
    Balandin, Alexander A.
    [J]. NANOSCALE, 2016, 8 (34) : 15774 - 15782
  • [53] TRANSPORT AND ELASTIC ANOMALIES IN ZRTE3
    TAKAHASHI, S
    SAMBONGI, T
    BRILL, JW
    ROARK, W
    [J]. SOLID STATE COMMUNICATIONS, 1984, 49 (11) : 1031 - 1033
  • [54] Effects of pressure and magnetic field on superconductivity in ZrTe3: local pair-induced superconductivity
    Tsuchiya, S.
    Matsubayashi, K.
    Yamaya, K.
    Takayanagi, S.
    Tanda, S.
    Uwatoko, Y.
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [55] NOISE AS A DIAGNOSTIC-TOOL FOR QUALITY AND RELIABILITY OF ELECTRONIC DEVICES
    VANDAMME, LKJ
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (11) : 2176 - 2187
  • [56] Mixed bulk-filament nature in superconductivity of the charge-density-wave conductor ZrTe3
    Yamaya, Kazuhiko
    Takayanagi, Shigeru
    Tanda, Satoshi
    [J]. PHYSICAL REVIEW B, 2012, 85 (18)
  • [57] A MODEL FOR ELECTROMIGRATION AND LOW-FREQUENCY NOISE IN THIN METAL-FILMS
    YANG, WY
    CELIKBUTLER, Z
    [J]. SOLID-STATE ELECTRONICS, 1991, 34 (08) : 911 - 916
  • [58] Transport properties of TaS3 and NbSe3 crystals of nanometer-scale transverse dimensions
    Zaitsev-Zotov, SV
    [J]. MICROELECTRONIC ENGINEERING, 2003, 69 (2-4) : 549 - 554
  • [59] Experimental observation of the quantum Hall effect and Berry's phase in graphene
    Zhang, YB
    Tan, YW
    Stormer, HL
    Kim, P
    [J]. NATURE, 2005, 438 (7065) : 201 - 204
  • [60] Superconductivity and Charge Density Wave in ZrTe3-xSex
    Zhu, Xiangde
    Ning, Wei
    Li, Lijun
    Ling, Langsheng
    Zhang, Ranran
    Zhang, Jinglei
    Wang, Kefeng
    Liu, Yu
    Pi, Li
    Ma, Yongchang
    Du, Haifeng
    Tian, Minglian
    Sun, Yuping
    Petrovic, Cedomir
    Zhang, Yuheng
    [J]. SCIENTIFIC REPORTS, 2016, 6