Homogenization limit for electrical conduction in biological tissues in the radio-frequency range

被引:17
作者
Amar, M
Andreucci, D
Bisegna, P
Gianni, R
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matematici, I-00161 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Ingn Civile, I-00133 Rome, Italy
来源
COMPTES RENDUS MECANIQUE | 2003年 / 331卷 / 07期
关键词
continuum mechanics; electrical conduction; homogenization; biomathematics;
D O I
10.1016/S1631-0721(03)00107-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study an evolutive model for electrical conduction in biological tissues, where the conductive intra-cellular and extracellular spaces are separated by insulating cell membranes. The mathematical scheme is an elliptic problem, with dynamical boundary conditions on the cell membranes. The problem is set in a finely mixed periodic medium. We show that the homogenization limit u(0) of the electric potential, obtained as the period of the microscopic structure approaches zero, solves the equation -div(sigma(0)del(x)u(0) + A(0)del(x)u(0) + integral(0)(t) A(1)(t - tau)del(x)u(0)(x, tau)dtau - F(x, t)) = 0 where sigma(0) > 0 and the matrices A(0), A(1) depend on geometric and material properties, while the vector function F keeps trace of the initial data of the original problem. Memory effects explicitly appear here, making this elliptic equation of non standard type.
引用
收藏
页码:503 / 508
页数:6
相关论文
共 7 条
[1]  
AMAR M, IN PRESS EVOLUTION M
[2]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[3]  
Bronzino JD., 1999, BIOMEDICAL ENG HDB
[4]  
FOSTER KR, 1989, CRIT REV BIOMED ENG, V17, P25
[5]  
LENE F, 1981, J MECANIQUE, V20, P509
[6]  
Raviart PA., 1983, Introduction a L'analyse Numerique des equations aux Derivees Partielles
[7]  
SANCHEZPALENZIA E, 1980, LECT NOTES PHYHS, V127