DeepBatch: A hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images

被引:21
|
作者
Zeiser, Felipe Andre [1 ]
da Costa, Cristiano Andre [1 ]
Ramos, Gabriel de Oliveira [1 ]
Bohn, Henrique C. [1 ]
Santos, Ismael [1 ]
Roehe, Adriana Vial [2 ]
机构
[1] Univ Vale Rio dos Sinos, Software Innovat Lab SOFTWARELAB, Grad Program Appl Comp, Sao Leopoldo, Brazil
[2] Univ Fed Ciencias Saude Porto Alegre, Dept Patol & Med Legal, Porto Alegre, RS, Brazil
关键词
Deep learning; Whole-slide image; Convolutional neural network; Interpretable diagnosis; Breast cancer; Histopathological images; CLASSIFICATION;
D O I
10.1016/j.eswa.2021.115586
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The gold standard for breast cancer diagnosis, treatment, and management is the histological analysis of a suspected section. Histopathology consists in analyzing the characteristics of the lesions using tissue sections stained with hematoxylin and eosin. However, pathologists are currently subjected to high workloads, mainly due to the fundamental role of histological analysis in the patient's treatment. In this context, methods able to reduce histological analysis time, provide a second opinion, or even point out suspicious locations as a screening tool become increasingly important for pathologists. This article proposes a model based on Convolutional Neural Networks (CNN) to provide a refined and multiclass segmentation of Whole Slide Imaging (WSI) for breast cancer. The methodology is divided into four modules: pre-processing, ROI detection, ROI sampling, and region segmentation. These modules are organized to decode the information learned using CNNs in interpretable predictions for pathologists. The preprocessing module is responsible for removing background and noise from WSI. At ROI detection, we use the U-Net convolutional architecture to identify suspicious regions in low magnification WSI. The sampling module maps the identified suspected areas from low magnifications to 40x magnifications. region segmentation module segments high-magnification areas using a ResNet50/U-Net. To validate the methodology, we use data sets from different sources that can be used together or separately in each module, depending on its purpose. We used 205 breast cancer WSI for training, validation, and testing. For the detection of suspicious regions by ROI detection, we obtained an IoU of 93.43%, accuracy of 91.27%, sensitivity of 90.77%, specificity of 94.03%, F1 score of 84.17%, and an AUC of 0.93. For the refined segmentation of WSI by the region segmentation module, we obtained an IoU of 88.23%, accuracy of 96.10%, sensitivity of 71.83%, specificity of 96.19%, F1 score of 82.94%, and an AUC of 0.88. In short, the model provides refined segmentation of breast cancer WSIs using a cascade of CNNs. This segmentation can assist pathologists in interpreting the diagnosis by accurately presenting the regions considered during the inference of WSI. Our results indicate the possibility of using the model as a second screening system.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
    Angel Cruz-Roa
    Hannah Gilmore
    Ajay Basavanhally
    Michael Feldman
    Shridar Ganesan
    Natalie N.C. Shih
    John Tomaszewski
    Fabio A. González
    Anant Madabhushi
    Scientific Reports, 7
  • [22] Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
    Cruz-Roa, Angel
    Gilmore, Hannah
    Basavanhally, Ajay
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie N. C.
    Tomaszewski, John
    Gonzalez, Fabio A.
    Madabhushi, Anant
    SCIENTIFIC REPORTS, 2017, 7
  • [23] Reliable detection of the presence of pulmonary carcinoma on whole-slide images by a deep learning model.
    Toyokawa, Gouji
    Kanavati, Fahdi
    Momosaki, Seiya
    Rambeau, Michael
    Kozuma, Yuka
    Shoji, Fumihiro
    Yamazaki, Koji
    Takeo, Sadanori
    Iizuka, Osamu
    Tsuneki, Masayuki
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [24] Identifying Tumor in Whole-Slide images of Breast Cancer Using Transfer Learning and Adaptive Sampling
    Wu, Chenchen
    Ruan, Jun
    Ye, Guanglu
    Zhou, Jingfan
    He, Simin
    Wang, Jianlian
    Zhu, Zhikui
    Yue, Junqiu
    Zhang, Yanggeling
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 167 - 172
  • [25] A Feature Learning Framework for Reproducible Invasive Tumor Detection of Breast Cancer in Whole-Slide Images
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Gilmore, Hannah
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2015, 95 : 40A - 40A
  • [26] Deep learning for automatic diagnosis of gastric dysplasia using whole-slide histopathology images in endoscopic specimens
    Shi, Zhongyue
    Zhu, Chuang
    Zhang, Yu
    Wang, Yakun
    Hou, Weihua
    Li, Xue
    Lu, Jun
    Guo, Xinmeng
    Xu, Feng
    Jiang, Xingran
    Wang, Ying
    Liu, Jun
    Jin, Mulan
    GASTRIC CANCER, 2022, 25 (04) : 751 - 760
  • [27] A Feature Learning Framework for Reproducible Invasive Tumor Detection of Breast Cancer in Whole-Slide Images
    Cruz-Roa, Angel
    Basavanhally, Ajay
    Gonzalez, Fabio
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Gilmore, Hannah
    Madabhushi, Anant
    MODERN PATHOLOGY, 2015, 28 : 40A - 40A
  • [28] Deep learning for automatic diagnosis of gastric dysplasia using whole-slide histopathology images in endoscopic specimens
    Zhongyue Shi
    Chuang Zhu
    Yu Zhang
    Yakun Wang
    Weihua Hou
    Xue Li
    Jun Lu
    Xinmeng Guo
    Feng Xu
    Xingran Jiang
    Ying Wang
    Jun Liu
    Mulan Jin
    Gastric Cancer, 2022, 25 : 751 - 760
  • [29] Spatiality Sensitive Learning for Cancer Metastasis Detection in Whole-Slide Images
    Zheng, Haixia
    Zhou, Yu
    Huang, Xin
    MATHEMATICS, 2022, 10 (15)
  • [30] Integration of Deep Learning and Graph Theory for Analyzing Histopathology Whole-slide Images
    Jung, Hyun
    Suloway, Christian
    Miao, Tianyi
    Edmondson, Elijah F.
    Morcock, David R.
    Deleage, Claire
    Liu, Yanling
    Collins, Jack R.
    Lisle, Curtis
    2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2018,