Mixed-type reverse order law, ternary powers and functional calculus

被引:2
作者
Dincic, Nebojsa C. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, POB 224, Nish 18000, Serbia
关键词
Moore-Penrose inverse; Reverse order law; Ternary power; Ternary polynomial; Borel functional calculus; MOORE-PENROSE INVERSE;
D O I
10.1007/s13398-019-00750-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present generalization of some results related to the mixed-type reverse order law for the Moore-Penrose inverse of various products of three operators on arbitrary Hilbert spaces. The generalization is done by using either the ternary powers or Borel functional calculus for bounded selfadjoint operators.
引用
收藏
页数:13
相关论文
共 19 条
  • [1] Arghiriade E., 1963, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur, V8, P244
  • [2] Ben-Israel Adi, 2003, Generalized Inverses: Theory and Applications, V15
  • [3] PSEUDO-INVERSE OF A PRODUCT
    BOULDIN, R
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (04) : 489 - 495
  • [4] Bouldin R.H., 1982, Recent Applications of Generalized Inverses., V66, P233
  • [5] CARADUS SR, 1978, QUEENS PAPERS PURE A, V50
  • [6] DINI N, 2014, LINEAR MULTILINEAR A, V62, P918, DOI DOI 10.1080/03081087.2013.794945
  • [7] Dini N, 2011, LINEAR ALGEBRA APPL, V435, P2658, DOI [10.1016/j.laa.2011.04.021, DOI 10.1016/J.LAA.2011.04.021]
  • [8] Djordjevi D, 2008, LECT GEN INVERSES
  • [9] Further results on the reverse order law for generalized inverses
    Djordjevic, Dragan S.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (04) : 1242 - 1246
  • [10] Reverse order law for the Moore-Penrose inverse
    Djordjevic, Dragan S.
    Dincic, Nebojsa C.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (01) : 252 - 261