A Lattice Boltzmann Model for Oscillating Reaction-Diffusion

被引:0
|
作者
Rodriguez-Romo, Suemi [1 ]
Ibanez-Orozco, Oscar [2 ]
Sosa-Herrera, Antonio [3 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Univ Nacl Autonoma Mexico, Fac Estudios Super Cuautitlan, Ave 1o Mayo S-N, Cuautitlan 54740, Mex, Mexico
[3] Consejo Nacl Ciencia & Tecnologia, Ctr Invest Ingn Jorge L Tamayo AC, Aguascalientes, Mexico
关键词
lattice Boltzmann method; reaction-diffusion; oscillating reactions; patterns; EQUATION; SYSTEMS;
D O I
10.1515/jnet-2015-0050
中图分类号
O414.1 [热力学];
学科分类号
摘要
A computational algorithm based on the lattice Boltzmann method (LBM) is proposed to model reaction-diffusion systems. In this paper, we focus on how nonlinear chemical oscillators like BelousovZhabotinsky (BZ) and the chlorite-iodide-malonic acid (CIMA) reactions can be modeled by LBM and provide with new insight into the nature and applications of oscillating reactions. We use Gaussian pulse initial concentrations of sulfuric acid in different places of a bidimensional reactor and nondiffusive boundary walls. We clearly show how these systems evolve to a chaotic attractor and produce specific pattern images that are portrayed in the reactions trajectory to the corresponding chaotic attractor and can be used in robotic control.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 50 条
  • [41] Surface reaction-diffusion kinetics on lattice at the microscopic scale
    Chew, Wei-Xiang
    Kaizu, Kazunari
    Watabe, Masaki
    Muniandy, Sithi, V
    Takahashi, Koichi
    Arjunan, Satya N., V
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [42] REACTION-DIFFUSION LATTICE GAS - THEORY AND COMPUTER RESULTS
    ALONSO, JJ
    MARRO, J
    GONZALEZMIRANDA, JM
    PHYSICAL REVIEW E, 1993, 47 (02): : 885 - 898
  • [43] Lattice differential equations embedded into reaction-diffusion systems
    Scheel, Arnd
    Van Vleck, Erik S.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 193 - 207
  • [44] Invariant regions for systems of lattice reaction-diffusion equations
    Slavik, Antonin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) : 7601 - 7626
  • [45] Existence and stability of reaction-diffusion waves on a fractal lattice
    Abdulbake, J
    Mulholland, AJ
    Gomatam, J
    CHAOS SOLITONS & FRACTALS, 2004, 20 (04) : 799 - 814
  • [46] A reaction-diffusion model for competing languages
    Walters, Caroline E.
    MECCANICA, 2014, 49 (09) : 2189 - 2206
  • [47] A reaction-diffusion model of stored bagasse
    Macaskill, C
    Sexton, MJ
    Gray, BF
    ANZIAM JOURNAL, 2001, 43 : 13 - 34
  • [48] A reaction-diffusion model of cancer invasion
    Gatenby, RA
    Gawlinski, ET
    CANCER RESEARCH, 1996, 56 (24) : 5745 - 5753
  • [49] Computing with a distributed reaction-diffusion model
    Bandini, S
    Mauri, G
    Pavesi, G
    Simone, C
    MACHINES, COMPUTATIONS, AND UNIVERSALITY, 2005, 3354 : 93 - 103
  • [50] Branching morphogenesis in a reaction-diffusion model
    Fleury, Vincent
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 4156 - 4160