Recent advances in tunable spin-orbit coupling using ferroelectricity

被引:11
|
作者
Fang, Mei [1 ]
Zhang, Wenchao [1 ]
Wu, Xiaoyu [1 ]
Guo, Wang [1 ]
Xia, Huayan [1 ]
Wang, Yutai [1 ]
Wang, Wenbin [2 ,3 ]
Shen, Jian [2 ,3 ,4 ,5 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China
[2] Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai 200433, Peoples R China
[3] Fundan Univ, Zhangjiang Fudan Int Innovat Ctr, Shanghai 201210, Peoples R China
[4] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[5] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
来源
APL MATERIALS | 2021年 / 9卷 / 06期
基金
中国国家自然科学基金;
关键词
ELECTRIC-FIELD CONTROL; EMERGENT PHENOMENA; MAGNETIZATION; POLARIZATION; LOGIC; SPINTRONICS; CONVERSION; DEVICES; TORQUES;
D O I
10.1063/5.0052553
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Spin-orbit coupling (SOC), describing the interaction of the spin and orbital motion of electrons with a variety of emergent phenomena, has driven significant research activity over the past decade. Here, we review the fundamental principles of SOC and its related physical effects on magnetism and spin-charge interconversion. A special emphasis is made on ferroelectricity controlled SOC with tunable spin-torque effects and spin-charge interconversions for potential applications in future scalable, non-volatile, and low power consumption information processing devices. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Tuning the interfacial spin-orbit coupling with ferroelectricity
    Fang, Mei
    Wang, Yanmei
    Wang, Hui
    Hou, Yusheng
    Vetter, Eric
    Kou, Yunfang
    Yang, Wenting
    Yin, Lifeng
    Xiao, Zhu
    Li, Zhou
    Jiang, Lu
    Lee, Ho Nyung
    Zhang, Shufeng
    Wu, Ruqian
    Xu, Xiaoshan
    Sun, Dali
    Shen, Jian
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Spin-orbit coupling and spin current in mesoscopic devices
    Xing YanXia
    Sun QingFeng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (01) : 196 - 206
  • [3] Spin transport at interfaces with spin-orbit coupling: Phenomenology
    Amin, V. P.
    Stiles, M. D.
    PHYSICAL REVIEW B, 2016, 94 (10)
  • [4] Interfacial spin-orbit torque without bulk spin-orbit coupling
    Emori, Satoru
    Nan, Tianxiang
    Belkessam, Amine M.
    Wang, Xinjun
    Matyushov, Alexei D.
    Babroski, Christopher J.
    Gao, Yuan
    Lin, Hwaider
    Sun, Nian X.
    PHYSICAL REVIEW B, 2016, 93 (18)
  • [5] Recent advances in spin-orbit torques: Moving towards device applications
    Ramaswamy, Rajagopalan
    Lee, Jong Min
    Cai, Kaiming
    Yang, Hyunsoo
    APPLIED PHYSICS REVIEWS, 2018, 5 (03):
  • [6] Spin-orbit coupling in graphene structures
    Kochan, Denis
    Gmitra, Martin
    Fabian, Jaroslav
    SPINTRONICS V, 2012, 8461
  • [7] Spin-orbit coupling in photonic graphene
    Zhang, Zhaoyang
    Liang, Shun
    Li, Feng
    Ning, Shaohuan
    Li, Yiming
    Malpuech, Guillaume
    Zhang, Yanpeng
    Xiao, Min
    Solnyshkov, Dmitry
    OPTICA, 2020, 7 (05): : 455 - 462
  • [8] Spin-orbit coupling in fluorinated graphene
    Irmer, Susanne
    Frank, Tobias
    Putz, Sebastian
    Gmitra, Martin
    Kochan, Denis
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2015, 91 (11):
  • [9] Spin-orbit coupling in bulk GaAs
    Fu, J. Y.
    Weng, M. Q.
    Wu, M. W.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (09): : 2890 - 2893
  • [10] Inertial effect on spin-orbit coupling and spin transport
    Basu, B.
    Chowdhury, Debashree
    ANNALS OF PHYSICS, 2013, 335 : 47 - 60