The geometry of L0

被引:17
作者
Kalton, N. J. [1 ]
Koldobsky, A.
Yaskin, V.
Yaskina, M.
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2007年 / 59卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.4153/CJM-2007-044-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that we have the unit Euclidean ball in R-n and construct new bodies using three operations-linear transformations, closure in the radial metric, and multiplicative summation defined by parallel to x parallel to(K+0L)= root parallel to x parallel to K parallel to x parallel to L. We prove that in dimension 3 this procedure gives all origin-symmetric convex bodies, while this is no longer true in dimensions 4 and higher. We introduce the concept of embedding of a normed space in L-0 that naturally extends the corresponding properties of L-p-spaces with p not equal 0, and show that the procedure described above gives exactly the unit balls of subspaces of L-0 in every dimension. We provide Fourier analytic and geometric characterizations of spaces embedding in L-0, and prove several facts confirming the-place of L-0 in the scale of L-p-spaces.
引用
收藏
页码:1029 / 1049
页数:21
相关论文
共 18 条
[1]  
Benyamini Yoav, 2000, Geometric nonlinear functional analysis. Vol. 1, V48, DOI DOI 10.1090/COLL/048
[2]   A CLASS OF CONVEX BODIES [J].
BOLKER, ED .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :323-&
[3]  
BRETAGNOLLE J, 1966, ANN I H POINCARE B, V2, P231
[4]  
GARDNER FJ, 1995, ITS APPL, V58
[5]   A POSITIVE ANSWER TO THE BUSEMANN-PETTY PROBLEM IN 3 DIMENSIONS [J].
GARDNER, RJ .
ANNALS OF MATHEMATICS, 1994, 140 (02) :435-447
[6]   An analytic solution to the Busemann-Petty problem on sections of convex bodies [J].
Gardner, RJ ;
Koldobsky, A ;
Schlumprecht, T .
ANNALS OF MATHEMATICS, 1999, 149 (02) :691-703
[7]  
Gelfand I M, 1964, GENERALIZED FUNCTION, V4
[8]  
GELFAND IM, 1964, GENERALIZED FUNCTION, V1
[9]   Intersection bodies and ellipsoids [J].
Goodey, P ;
Weil, W .
MATHEMATIKA, 1995, 42 (84) :295-304
[10]   Intersection bodies and Lp-spaces [J].
Kalton, NJ ;
Koldobsky, A .
ADVANCES IN MATHEMATICS, 2005, 196 (02) :257-275