Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers

被引:73
|
作者
Botez, D. [1 ]
Kumar, S. [2 ]
Shin, J. C. [1 ]
Mawst, L. J. [1 ]
Vurgaftman, I. [3 ]
Meyer, J. R. [3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] USN, Res Lab, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
current density; electro-optical effects; leakage currents; quantum cascade lasers; PERFORMANCE;
D O I
10.1063/1.3478836
中图分类号
O59 [应用物理学];
学科分类号
摘要
The equations for threshold-current density J(th), differential quantum efficiency eta(d), and maximum wallplug efficiency eta(wp,max) for quantum-cascade lasers (QCLs) are modified for electron leakage and backfilling. A thermal-excitation model of "hot" injected electrons from the upper laser state to upper active-region states is used to calculate leakage currents. The calculated characteristic temperature T(0) for J(th) is found to agree well with experiment for both conventional and deep-well (DW) QCLs. For conventional QCLs eta(wp,max) is found to be strongly temperature dependent; explaining experimental data. At 300 K for optimized DW-QCLs, front-facet, continuous-wave eta(wp,max) values >20% are projected. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3478836]
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Free space optical communications based on Quantum Cascade Lasers
    Delga, Alexandre
    Leviandier, Luc
    QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XVI, 2019, 10926
  • [32] Optical Properties of Active Regions in Terahertz Quantum Cascade Lasers
    M. Dyksik
    M. Motyka
    W. Rudno-Rudziński
    G. Sęk
    J. Misiewicz
    D. Pucicki
    K. Kosiel
    I. Sankowska
    J. Kubacka-Traczyk
    M. Bugajski
    Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37 : 710 - 719
  • [33] Peak optical power and thermal performance of quantum cascade lasers
    Scamarcio, G
    Troccoli, M
    Spagnolo, V
    MATERIALS AND DEVICES FOR PHOTONIC CIRCUITS II, 2001, 4453 : 81 - 92
  • [34] Destabilization of Quantum Cascade Lasers Using Tilted Optical Feedback
    Wang, Xing-Guang
    Zhao, Bin-Bin
    Deng, Yu
    Wang, Cheng
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [35] The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength
    Novikov, I. I.
    Babichev, A. V.
    Bugrov, V. E.
    Gladyshev, A. G.
    Karachinsky, L. Ya
    Kolodeznyi, E. S.
    Kurochkin, A. S.
    Savelyev, A. V.
    Sokolovskii, G. S.
    Egorov, A. Yu
    INTERNATIONAL CONFERENCE PHYSICA.SPB/2016, 2017, 929
  • [36] Two Dimensional Integration of Ring Cavity Surface Emitting Quantum Cascade Lasers
    Schwarzer, Clemens
    Mujagic, Elvis
    Zederbauer, Tobias
    Detz, Hermann
    Yao, Yu
    Andrews, Aaron M.
    Schrenk, Werner
    Chen, Jianxin
    Gmachl, Claire
    Strasser, Gottfried
    15TH INTERNATIONAL CONFERENCE ON NARROW GAP SYSTEMS (NGS15), 2011, 1416 : 49 - 51
  • [37] Temperature dependence and screening models in quantum cascade structures
    Nelander, Rikard
    Wacker, Andreas
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (06)
  • [38] Impedance characteristics of mid infra red Quantum Cascade Lasers
    Ashok, P.
    Madhan, M. Ganesh
    OPTICS AND LASER TECHNOLOGY, 2021, 134
  • [39] High power quantum cascade lasers operating at room temperature
    Razeghi, M
    Slivken, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S637 - S641
  • [40] Surface-emitting quantum cascade lasers with metallic photonic-crystal resonators
    Xu, Gangyi
    Moreau, Virginie
    Chassagneux, Yannick
    Bousseksou, Adel
    Colombelli, Raffaele
    Patriarche, G.
    Beaudoin, G.
    Sagnes, I.
    APPLIED PHYSICS LETTERS, 2009, 94 (22)