Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers

被引:74
作者
Botez, D. [1 ]
Kumar, S. [2 ]
Shin, J. C. [1 ]
Mawst, L. J. [1 ]
Vurgaftman, I. [3 ]
Meyer, J. R. [3 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] USN, Res Lab, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
current density; electro-optical effects; leakage currents; quantum cascade lasers; PERFORMANCE;
D O I
10.1063/1.3478836
中图分类号
O59 [应用物理学];
学科分类号
摘要
The equations for threshold-current density J(th), differential quantum efficiency eta(d), and maximum wallplug efficiency eta(wp,max) for quantum-cascade lasers (QCLs) are modified for electron leakage and backfilling. A thermal-excitation model of "hot" injected electrons from the upper laser state to upper active-region states is used to calculate leakage currents. The calculated characteristic temperature T(0) for J(th) is found to agree well with experiment for both conventional and deep-well (DW) QCLs. For conventional QCLs eta(wp,max) is found to be strongly temperature dependent; explaining experimental data. At 300 K for optimized DW-QCLs, front-facet, continuous-wave eta(wp,max) values >20% are projected. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3478836]
引用
收藏
页数:3
相关论文
共 14 条
[1]   Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power [J].
Bai, Y. ;
Darvish, S. R. ;
Slivken, S. ;
Zhang, W. ;
Evans, A. ;
Nguyen, J. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2008, 92 (10)
[2]  
Botez D., UNPUB
[3]   Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits [J].
Faist, Jerome .
APPLIED PHYSICS LETTERS, 2007, 90 (25)
[4]   Gain measurements in strain-compensated quantum cascade laser [J].
Gresch, Tobias ;
Faist, Jerome ;
Giovannini, Marcella .
APPLIED PHYSICS LETTERS, 2009, 94 (16)
[5]   3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach [J].
Lyakh, A. ;
Maulini, R. ;
Tsekoun, A. ;
Go, R. ;
Pfluegl, C. ;
Diehl, L. ;
Wang, Q. J. ;
Capasso, Federico ;
Patel, C. Kumar N. .
APPLIED PHYSICS LETTERS, 2009, 95 (14)
[6]   1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm [J].
Lyakh, A. ;
Pfluegl, C. ;
Diehl, L. ;
Wang, Q. J. ;
Capasso, Federico ;
Wang, X. J. ;
Fan, J. Y. ;
Tanbun-Ek, T. ;
Maulini, R. ;
Tsekoun, A. ;
Go, R. ;
Patel, C. Kumar N. .
APPLIED PHYSICS LETTERS, 2008, 92 (11)
[7]   High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings [J].
Maulini, Richard ;
Lyakh, Arkadiy ;
Tsekoun, Alexei ;
Go, Rowel ;
Pfluegl, Christian ;
Diehl, Laurent ;
Capasso, Federico ;
Patel, C. Kumar N. .
APPLIED PHYSICS LETTERS, 2009, 95 (15)
[8]   Activation energy study of electron transport in high performance short wavelengths quantum cascade lasers [J].
Pfluegl, Christian ;
Diehl, Laurent ;
Lyakh, Arkadiy ;
Wang, Qi Jie ;
Maulini, Richard ;
Tsekoun, Alexei ;
Patel, C. Kumar N. ;
Wang, Xiaojun ;
Capasso, Federico .
OPTICS EXPRESS, 2010, 18 (02) :746-753
[9]  
RAZEGHI M, 2009, P SPIE, V7230
[10]   Ultra-low temperature sensitive deep-well quantum cascade lasers (λ=4.8 μm) via uptapering conduction band edge of injector regions [J].
Shin, J. C. ;
Mawst, L. J. ;
Botez, D. ;
Vurgaftman, I. ;
Meyer, J. R. .
ELECTRONICS LETTERS, 2009, 45 (14) :741-742