Geminate Charge Recombination in Polymer/Fullerene Bulk Heterojunction Films and Implications for Solar Cell Function

被引:120
|
作者
Pal, Suman Kalyan [1 ]
Kesti, Tero [2 ]
Maiti, Manisankar [1 ]
Zhang, Fengling [3 ]
Inganas, Olle [3 ]
Hellstrom, Stefan [4 ]
Andersson, Mats R. [4 ]
Oswald, Frederic [5 ]
Langa, Fernando [5 ]
Osterman, Tomas [1 ]
Pascher, Torbjorn [1 ]
Yartsev, Arkady [1 ]
Sundstrom, Villy [1 ]
机构
[1] Lund Univ, SE-22100 Lund, Sweden
[2] Univ Oulu, Measurement & Sensor Lab, Kajaani 87400, Finland
[3] Linkoping Univ, IFM, Dept Phys, S-58183 Linkoping, Sweden
[4] Chalmers Univ Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
[5] Univ Castilla La Mancha, Inst Nanociencia Nanotecnol & Mat Mol INAMOL, Toledo 45071, OH USA
基金
瑞典研究理事会;
关键词
PHOTOINDUCED ELECTRON-TRANSFER; OPEN-CIRCUIT VOLTAGE; TRANSFER EXCITONS; CONJUGATED POLYMER; BLEND FILMS; POLYFLUORENE; MORPHOLOGY; EFFICIENT; TRANSIENT; STATE;
D O I
10.1021/ja104786x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have studied the influence of three different fullerene derivatives on the charge generation and recombination dynamics of polymer/fullerene bulk heterojunction (BHJ) solar cell blends. Charge generation in APFO3/[70]PCBM and APFO3/[60]PCBM is very similar and somewhat slower than charge generation in APFO3/[70]BTPF. This difference qualitatively matches the trend in free energy change of electron transfer estimated from the LUMO energies of the polymer and fullerene derivatives. The first order (geminate) charge recombination rate is significantly different for the three fullerene derivatives studied and increases in the order APFO3/[70]PCBM < APFO3/[60]PCBM < APFO3/[70]BTPF. The variation in electron transfer rate cannot be explained from the LUMO energies of the fullerene derivatives and single-step electron transfer in the Marcus inverted region and simple considerations of expected trends for the reorganization energy and free energy change. Instead we suggest that geminate charge recombination occurs from a state where electrons and holes have separated to different distances in the various materials because of an initially high charge mobility, different for different materials. In a BHJ thin film this charge separation distance is not sufficient to overcome the electrostatic attraction between electrons and holes and geminate recombination occurs on the nanosecond to hundreds of nanoseconds time scale. In a BHJ solar cell, we suggest that the internal electric field in combination with polarization effects and the dynamic nature of polarons are key features to overcome electron hole interactions to form free extractable charges.
引用
收藏
页码:12440 / 12451
页数:12
相关论文
共 50 条
  • [41] Tracing charge transfer states in polymer:fullerene bulk-heterojunctions
    Manca, Marianna
    Piliego, Claudia
    Wang, Ergang
    Andersson, Mats R.
    Mura, Andrea
    Loi, Maria A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (25) : 7321 - 7325
  • [42] Mechanical Properties of Polymer-Fullerene Bulk Heterojunction Films: Role of Nanomorphology of Composite Films
    Kim, Jae-Han
    Noh, Jonghyeon
    Choi, Hyesun
    Lee, Jung-Yong
    Kim, Taek-Soo
    CHEMISTRY OF MATERIALS, 2017, 29 (09) : 3954 - 3961
  • [43] Correlating Emissive Non-Geminate Charge Recombination with Photocurrent Generation Efficiency in Polymer/Perylene Diimide Organic Photovoltaic Blend Films
    Keivanidis, Panagiotis E.
    Kamm, Valentin
    Zhang, Weimin
    Floudas, George
    Laquai, Frederic
    McCulloch, Iain
    Bradley, Donal D. C.
    Nelson, Jenny
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (11) : 2318 - 2326
  • [44] High-Performance Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells
    Nam, Chang-Yong
    Su, Dong
    Black, Charles T.
    ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (22) : 3552 - 3559
  • [45] Fullerene Functionalized Polystyrene: Synthesis, Characterizations, and Application in Bulk Heterojunction Polymer Solar Cells
    Seeponkai, Narumon
    Keaitsirisart, Nopparat
    Wootthikanokkhan, Jatuphorn
    Thanachayanont, Chanchana
    Chuangchote, Surawut
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2014, 63 (01) : 33 - 40
  • [46] On the Efficiency Limit of Conjugated Polymer: Fullerene-Based Bulk Heterojunction Solar Cells
    Scharber, Markus C.
    ADVANCED MATERIALS, 2016, 28 (10) : 1994 - +
  • [47] Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells
    Bertho, Sabine
    Janssen, Griet
    Cleij, Thomas J.
    Conings, Bert
    Moons, Wouter
    Gadisa, Abay
    D'Haen, Jan
    Goovaerts, Etienne
    Lutsen, Laurence
    Manca, Jean
    Vanderzande, Dirk
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (07) : 753 - 760
  • [48] Enhanced performance of polymer: fullerene bulk heterojunction solar cells upon graphene addition
    Robaeys, Pieter
    Bonaccorso, Francesco
    Bourgeois, Emilie
    D'Haen, Jan
    Dierckx, Wouter
    Dexters, Wim
    Spoltore, Donato
    Drijkoningen, Jeroen
    Liesenborgs, Jori
    Lombardo, Antonio
    Ferrari, Andrea C.
    Van Reeth, Frank
    Haenen, Ken
    Manca, Jean V.
    Nesladek, Milos
    APPLIED PHYSICS LETTERS, 2014, 105 (08)
  • [49] Morphology and carrier non-geminate recombination dynamics regulated by solvent additive in polymer/fullerene solar cells
    Huo, Ming-Ming
    Hu, Rong
    Zhang, Qing-Shan
    Chen, Shaoting
    Gao, Xing
    Zhang, Yi
    Yan, Wei
    Wang, Yong
    RSC ADVANCES, 2020, 10 (39) : 23128 - 23135
  • [50] Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend
    Huang, Jen-Hsien
    Yang, Chuan-Yi
    Ho, Zhong-Yo
    Kekuda, Dhananjay
    Wu, Meng-Chyi
    Chien, Fan-Ching
    Chen, Peilin
    Chu, Chih-Wei
    Ho, Kuo-Chuan
    ORGANIC ELECTRONICS, 2009, 10 (01) : 27 - 33