Inertial Effect on Oil/Water Countercurrent Imbibition in Porous Media from a Pore-Scale Perspective

被引:6
|
作者
Cheng, Zhilin [1 ]
Gao, Hui [1 ]
Ning, Zhengfu [2 ]
Wang, Chen [1 ]
Li, Teng [1 ]
机构
[1] Xian Shiyou Univ, Sch Petr Engn, Xian, Shaanxi, Peoples R China
[2] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China
来源
SPE JOURNAL | 2022年 / 27卷 / 03期
基金
中国国家自然科学基金;
关键词
LATTICE BOLTZMANN METHOD; CO2; DISPLACEMENT; SIMULATION; FLOW; BOUNDARY; MICROMODELS; PRESSURE; DYNAMICS;
D O I
10.2118/209225-PA
中图分类号
TE [石油、天然气工业];
学科分类号
0820 ;
摘要
The color-gradient lattice Boltzmann (LB) method is used to investigate the inertial effect on oil/water countercurrent imbibition characteristics in a matrix-fracture system. The interplay between capillarity, fluid inertia, and viscous force during the imbibition under different viscosity ratios is delineated. Pore-scale dynamics, the interfacial front morphology, and oil recovery under the influence of fluid inertia are also elucidated. Additionally, we study the energy conversion during the imbibition displacement from the perspective of energy balance. Finally, the application of the theoretical scaling model is discussed based on the simulated data. Results show that the pore-scale events involved mainly consist of cooperative pore filling, oil expelled from large pores, and the motion of jetting-like oil clusters under high viscosity ratios. The curve of pressure difference between the fracture inlet and outlet vs. imbibition time can be regarded as a signal to discern the imbibition regime, which is taken together with the energy conversion analysis could further determine how capillarity, external pressure, and viscous dissipation contribute to water imbibition. Capillary force dominates in the cases of low viscosity ratios, and the majority of the surface energy is dissipated. The external pressure becomes increasingly significant and even governs the countercurrent imbibition as the viscosity ratio increases. Furthermore, the oil recovery, interfacial area, and fractal dimension of the nonwetting phase strongly rely on the Ohnesorge (Oh) number when the viscosity ratio is low. In contrast, the inertial effect can be neglected in the cases of high viscosity ratios. Besides, the relationship between the simulated imbibition recovery and imbibition time follows the theoretical scaling model as the external pressure is trivial. The comparable exponents fitted from different Oh numbers reveal that the inertial effect does not alter the imbibition dynamics. In sum, fluid inertia only affects the local fluid behaviors and thus the imbibition oil recovery when the viscosity ratio is low. These results could provide important implications for a range of energy-related and environmental applications, such as the evaluation of fracturing fluids loss, oil recovery by water huff n puff, microfluidic devices, and hydrological sciences.
引用
收藏
页码:1619 / 1632
页数:14
相关论文
共 50 条
  • [31] Pore-scale modeling of dispersion in disordered porous media
    Ovaysi, Saeed
    Piri, Mohammad
    JOURNAL OF CONTAMINANT HYDROLOGY, 2011, 124 (1-4) : 68 - 81
  • [32] Pore-Scale Study on Convective Drying of Porous Media
    Fei, Linlin
    Qin, Feifei
    Zhao, Jianlin
    Derome, Dominique
    Carmeliet, Jan
    LANGMUIR, 2022, 38 (19) : 6023 - 6035
  • [33] Pore-scale modeling of phase change in porous media
    Cueto-Felgueroso, Luis
    Fu, Xiaojing
    Juanes, Ruben
    PHYSICAL REVIEW FLUIDS, 2018, 3 (08):
  • [34] Nanofluid-Induced Wettability Gradient and Imbibition Enhancement in Natural Porous Media: A Pore-scale Experimental Investigation
    Kuang, Wendi
    Saraji, Soheil
    Piri, Mohammad
    TRANSPORT IN POROUS MEDIA, 2020, 134 (03) : 593 - 619
  • [35] Towards improved understanding of spontaneous imbibition into dry porous media using pore-scale direct numerical simulations
    Malenica, Luka
    Zhang, Zhidong
    Angst, Ueli
    ADVANCES IN WATER RESOURCES, 2024, 194
  • [36] NUMERICAL SIMULATION OF COUNTERCURRENT SPONTANEOUS IMBIBITION OF CARBONATED WATER IN POROUS MEDIA
    Abbaszadeh, Mohsen
    Nasiri, Masoud
    Riazi, Masoud
    JOURNAL OF POROUS MEDIA, 2016, 19 (07) : 635 - 647
  • [37] Nanofluid-Induced Wettability Gradient and Imbibition Enhancement in Natural Porous Media: A Pore-scale Experimental Investigation
    Wendi Kuang
    Soheil Saraji
    Mohammad Piri
    Transport in Porous Media, 2020, 134 : 593 - 619
  • [38] A pore-scale investigation of the effect of nanoparticle injection on properties of sandy porous media
    Fopa, Raoul Djou
    Bianco, Carlo
    Archilha, Nathaly Lopes
    Moreira, Anderson Camargo
    Pak, Tannaz
    JOURNAL OF CONTAMINANT HYDROLOGY, 2023, 253
  • [39] Modeling flow and deformation in porous media from pore-scale to the Darcy-scale
    Hilliard, Zachary
    Evans, T. Matthew
    Peszynska, Malgorzata
    RESULTS IN APPLIED MATHEMATICS, 2024, 22
  • [40] Effect of hydrate on permeability in porous media: Pore-scale micro-simulation
    Hou, Jian
    Ji, Yunkai
    Zhou, Kang
    Liu, Yongge
    Wei, Bei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 416 - 424